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The use of artificial intelligence and machine learning in education has grown significantly in

recent years. Numerous AI-assisted solutions for use in educational settings are constantly being

developed. IIT Kanpur’s ESC101, an introductory programming course, uses tools like PRIOR-

ITY to help the problem setters.

PRIORITY is a tool with AI support for labelling programming issues. The programme is de-

signed to assist instructors of IIT Kanpur’s ESC101 programming course. The enormous corpus

of programming problems from earlier ESC101 offers are labelled by PRIORITY using semi-

supervised approaches, making the issues searchable. Tutors’ jobs could become considerably

quicker and simpler as a result.

Users can look for programming questions from previous ESC101 course offers on PRIOR-

ITY’s web portal. It makes use of machine learning algorithms to automatically label each pro-

gramming question so that it may be searched for.

Priority has been designed with the ability to store feedback (both implicit and explicit) but

is not trained on it. We incorporate the feedback by curating a new dataset. Based upon several

carefully selected criteria, the feedback is classified into two categories, and then instance-wise

weights are assigned. Due to the similarity in the design scheme between the old and the new

dataset, we were also able to easily perform a comparative study between the previous version

(refer here) and the new version of Prirority. We also used an Ensemble based technique for the

label prediction task.

We propose further optimisation by moving away from the traditional static weight assignment

to a more dynamic approach.
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CHAPTER 1

Introduction

Contents
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Interest in the topic of Artificial Intelligence (AI) has increased dramatically across a number

of domains. Particularly intriguing is the increase in the use of AI tools and algorithms in the

field of education. Massive open online courses (MOOCs) are quickly taking off as a well-liked

method of instructing programming. The need to create technologies that can lessen the workload

for the instructors and Teaching Assistants (TAs) grows as the number of students enrolled in these

courses rises.

Compilation mistakes are one of the largest learning obstacles for a new programmer. [5]

demonstrates how much time rookie programmers spend attempting to fix these mistakes. Ad-

ditionally, the diagnostics offered by the compiler are frequently too complicated for beginning

programmers, which may exacerbate the problem rather than resolve it. Because of this, there

has been a lot of attention recently in the field of automatic compilation error repair. [3] suggests

an AI-based pipeline that accepts an incorrect programme as input and outputs an accurate tar-

get program. Additionally, they divide this compiler error correction procedure into a number of

manageable modules, which makes the pipeline a far better fit for instructional applications than

other cutting-edge approaches. [6] [10] enhance their work by making changes to certain mod-

ules. Concretely, [6] [10] demonstrate how compiler diagnostics can offer some insightful input

and how better label metadata management can greatly benefit the pipeline. They also suggest a

brand-new approach to creating synthetic data that will directly help the pipeline.

Large MOOCs also struggle with the reuse of questions and problems. Consider IIT Kanpur’s

ESC101, a fundamental programming course that enrols hundreds of students each semester. The

lecturers and tutors must provide programming issues for each session of the course, which the

students then resolve in lab sessions. However, subsequent offerings cannot make use of this enor-

mous corpus of issues that has been gathered because these problems are not indexed. In order

to address this, PRIORITY [10] [6] (PRoblem IndicatOr ReposITorY) was created which is an

AI-based labelling method to categorise these problems. A web app was also designed to enable

this course’s instructors to look for a problem from a previous offering.

We propose improvements which lead to optimisations in the working of PRIORITY. The

most significant improvement being the incorporation of user feedback which enables PRIORITY

to make suggestions that are more tailored to the needs of the tutors or the instructors or the Teach-

ing Assistants (TAs).
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2 Chapter 1. Introduction

We also propose few changes to base classifier of PRIORITY which leads to minor improve-

ments in accuracy metrics as well as a considerable speedup. The speedup will allow PRIORITY

to provide faster suggestions to the users, thus enhancing their experience.

1.1 Our Contributions

The key contributions of this thesis are enumerated below:

1. We Looked into the data generated by the repair class module of MACER. Besides the

usual repair classes, MACER clubs the rest of the classes into miscellaneous class. We

looked into the repairs for miscellaneous class to identify any patterns via which another

repair class could be formed.

2. We propose accommodation of the user generated feedback which can be in the form of

clicks, texts, comments, ratings etc. into the dataset for better suggestions to the user.

3. We propose use of threshold in the label propagation in PRIORITY [10] to ensure:

• Concrete prediction by the classifier.

• Speedup by reducing the number of cycles.

• Improvement in precision and recall.

2



CHAPTER 2

Related Works

Other works related to MACER [3] and PRIORITY [10] [6] has been done and published.

[6] and [10] introduced MACER++ which was an improvement to MACER. The focus was

on optimisations to each of the modules and repair classes. They also proposed atomic repair, a

pipeline of Data generation, Feature Encoding, Training and then finally prediction. Atomic repair

focuses on atomic operations or a single insert, single replacement, single deletion. It also works

well with zero shot repairs, i.e., it performs well on unseen errors.

[2] and [11] suggests a number of modifications to the PRIORITY back-end machine learning

architecture. [2] [11] suggest utilising a more substantial set of features. These characteristics

were taken from the solution C programs’ Abstract Syntax Trees and Function Call Graphs.

For feature selection, [11] experimented with a variety of correlation techniques. The test data

points’ f1-score significantly increased as a result of the Pearson correlation algorithm’s efficient

feature selection. Following supervised feature selection, one-vs-rest logistic regression is used to

train the model. Because they significantly rely on programming language tokens, programming

labels exist that demand different numbers of attributes to be detected. As a result, [11] exper-

imented with various feature counts for each programming label and noticed a notable increase

in the f1-score. By employing the ensemble technique during the feature selection phase, they

proposed further optimization. This method greatly enhances accuracy and f1-score by combining

Pearson correlation and normalised mutual information for different values of K.

The feature extraction as suggested by [2] has been carried out using a variety of tree traver-

sal and graph techniques. [2] employ a filter-based supervised feature selection technique with

normalised mutual information score to train a one-vs-all logistic regression model for the label

prediction problem. To make sure that the model only predicts the pertinent labels during predic-

tion, they use a ranking-style strategy. To complete the difficulty score prediction task, they use

ensemble learning approaches. To integrate the predictions of the top-performing regressor and

classifier models, they have employed a Mixture of Experts (MOE) model.

3
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PRIORITY

Contents
3.1 Confidence Score and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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3.2.1 Implicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Explicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2.1 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2.2 Feedback Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2.3 Text Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Template Copied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.4 Dwell Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.5 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.6 “Hard Yes” and “Weak Yes” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.7 Re-annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Comparison : Old Dataset vs. New Dataset . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Bagging Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Dynamic weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Results For dynamic weights (Maximum) - . . . . . . . . . . . . . . . . . . . . . 32

3.6.2 Results For dynamic weights (Minimum) - . . . . . . . . . . . . . . . . . . . . . 33

Every semester, ESC101, a course for beginning programmers, is provided. It teaches the

fundamentals of programming. Every week in this course, labs are held where students are given

programming questions to answer in a set amount of time. This quiz’s questions are based on

the programming ideas covered in this week’s and prior weeks’ lectures. These programming

questions must be created each week by the course tutors (and TAs). Using the online coding

platform PRUTOR [4], a sizable corpus of such questions from all of this course’s offerings has

been compiled. However, because these issues cannot be searched, every year the tutors must start

by developing these questions from fresh. It takes a lot of time and work to do this.

The primary goal of PRIORITY is to enable searchable access to the extensive corpus of

programmes that are accessible from prior ESC101 course offerings. The ability to search these

questions depending on the knowledge needed to solve them, their difficulty, etc. should be avail-

able to tutors and teaching assistants (TAs). This would provide the tutors a solid place to start

because they could see what kinds of issues were used in earlier presentations. As a result, solving

problems becomes lot easier and quicker. There are 28 tags or labels in the PRIORITY that are

5



6 Chapter 3. PRIORITY

connected to programming ideas in order to make these issues searchable. To better understand

the working of PRIORITY refer to [10] and [6].

In this section we discuss different optimisations like confidence score, data curation using

feedback and static and dynamic weights for PRIORITY which we are able to propose after vari-

ous experiments .

3.1 Confidence Score and Threshold

In the prior work [10] [6], PRIORITY used label propagation (which is a semi-supervised ma-

chine learning technique). The process involves using the already labelled instances to label the

unlabelled instances. It is carried out to increase the number of labelled instances due to several

of the well known algorithms performing poorly on the available data.

The process is carried out on a per cycle basis. The classifier provides confidence scores for

all of the predictions that it does, and 50 top predictions are moved to the training set with the

predicted labels. This cycle is repeated till all of the unlabelled instances are moved to the labelled

set. A major drawback of this setup is that the classifier’s predictions are magnified. Meaning, if

the classifier performs poorly over the initially labelled data, then the labeling of the unlabelled

data would follow the same.

The precision and recall plots for each of the labels per cycle can be seen in the graphs in-

cluded.

A better approach we present is to observe the probabilities for each of the labels presented

by the algorithm (note that the labelling is done via a one vs rest approach where for each of the

problem instances it is predicted by the algorithm whether it belongs to the given label or not) and

put a threshold or a cut-off.

Placing a high threshold allows us to only pick or label those unlabelled instances about which

we require high confidence from the algorithm itself. It also provides a benefit by restricting the

label propagation to an early stop rather than exhausting all of the cycles. From the label wise

precision and recall plots included for the threshold score of +0.85, we can see that the label prop-

agation stops for several labels at an earlier point or cycle as compared to previously.

This increases the speed of the method as there is an early stopping now with the exhaustion

of cycles no longer required. This results in a speedup in the training phase of PRIORITY. While

a few of the labels showed no improvement, several of the labels showed minor improvements, as

can be compared via the plots.

The threshold of +0.85 is obtained after thorough experimentation and fulfilment of certain

criteria, which are:

6



3.2. Data Curation: 7

(a) Label Arithmetic (b) Label Loops

Figure 3.1: Plots for labels Arithmetic and Loops without using confidence scores

(a) Label Terminal IO (b) Label Arrays

Figure 3.2: Plots for labels Terminal IO and Arrays without using confidence scores

• High confidence score to ensure a concrete prediction by the classifier.

• Sufficiently low threshold value to observe a significant number of cycles.

• Improvement in precision.

• Improvement in recall.

3.2 Data Curation:

The task is to create a new dataset. We can put to use everything in the dataset that priority stores.

Priority has been designed to gather/collect the feedback obtained from the users. Feedback can

be of different forms and different types. The feedback is composed of two methods.

7



8 Chapter 3. PRIORITY

(a) Label Pointers (b) Label Conditionals

Figure 3.3: Plots for labels Pointers and Conditionals without using confidence scores

(a) Label Structures (b) Label Char-string

Figure 3.4: Plots for labels Structures and Char-string without using confidence scores

(a) Label Functions (b) Label Algorithms

Figure 3.5: Plots for labels Functions and Algorithms without using confidence scores

8



3.2. Data Curation: 9

(a) Label Arithmetic (b) Label Loops

Figure 3.6: Plots for labels Arithmetic and Loops using confidence scores

(a) Label Terminal IO (b) Label Arrays

Figure 3.7: Plots for labels Terminal IO and Arrays using confidence scores

(a) Label Pointers (b) Label Conditionals

Figure 3.8: Plots for labels Pointers and Conditionals using confidence scores

9



10 Chapter 3. PRIORITY

(a) Label Structures (b) Label Char-string

Figure 3.9: Plots for labels Structures and Char-string using confidence scores

(a) Label Functions (b) Label Algorithms

Figure 3.10: Plots for labels Functions and Algorithms using confidence scores

• Implicit feedback (a weak form of feedback): Such feedback is not mentioned but taken by

monitoring user activity. A lot of companies like Google, Facebook etc. employ this in their

product nowadays.

• Explicit feedback: Includes mentioned feedback consisting of comments, re-annotations,

user ratings or star ratings.

The purpose of creating a new dataset or modifying an existing dataset is to use the acquired

information (the feedback) to improve the pre-existing data source. The newly formed dataset can

also be used for the new classifiers to run and train on them. The modification or building of a

new dataset also allows us to compare the model used in the previous work [6] [10] and the new

models we designed and built.

As opposed to the previous approach [10] of performing label propagation (which is a semi-

supervised machine learning approach ), which yielded minimal benefits as the approach is highly

10



3.2. Data Curation: 11

prone to mislabelling the unlabelled data and thus, in turn, affects the overall functioning and

predictive power of the model, the approach tried here takes into account the concrete feedback

provided by the users and then learns and predicts accordingly.

Let’s look at the feedback stored by Priority for each of the forms.

3.2.1 Implicit Feedback

Priority stores implicit feedback in a table called ‘clicks’. After a close inspection of the table,

we discovered that there were around 500 entries in the table. Some of the important fields in the

table are:

• Start time: The time the user opened the given problem and started looking at it.

• End time: The time at which the user finishes looking at the given problem and either

switches to another problem or selects the problem for further use.

• Query: This states the query or the labels or the problem attributes the user specified for

searching for a problem.

• Problem id: The id associated with the problem that is browsed by the user.

• Category: A categorical variable. Upon further inspection, it consists of three categories:

– Navigate: The user navigated to some other problem or back to the main page and

decided to not go with the current problem.

– Template copied: The user copied the problem template. Further inspection is required

to ensure whether the problem suggestion was found to be useful by the user.

– Solution copied: The user decided to go with the currently selected problem and

copied the problem’s solution for further use.

– Statement copied: The user decided to go with the currently selected problem but only

copied the problem statement.

The problems have been classified into different categories to get a more thorough insight to

the user actions based upon what is suggested to them.

The end_time and start_time parameters are used to calculate dwell time. Dwell time is the

amount of time a user spends observing a given problem. It is a value regularly used in ‘Search

Engine Optimisation and can also be used here. A small dwell time implies that the user didn’t

find the given problem helpful and switched to other page, while an extended dwell time can be

inconclusive, as it can mean that the user might be away from the keyboard, using their phone, or

something else. We will have a more detailed look at dwell time in a later section.

11



12 Chapter 3. PRIORITY

3.2.2 Explicit Feedback

The different forms of explicit feedback are stored in different tables. The tables are as follows:

• Feedback

• Feedback_rating

• Text_feedback

3.2.2.1 Feedback

This table consists of the re-annotations or modifications to the problem labels as suggested by the

user based on their judgement. The tables consist of ‘problem_id’, and all the labels that PRIOR-

ITY can assign to a given problem.

The row values that can be entered consist of binary values. i.e., 0 and 1. This can be thought

of as a switch as well, with 0 indicating the switch is off and 1 indicating the switch is on. The

labels with entry 1 have been suggested by the user as the labels suitable for the problem, while

the label with entry 0 has been indicated by the user as unsuitable for the problem.

The suggestions made here can be used to modify the existing dataset for improvements.

3.2.2.2 Feedback Rating

This table consists of the user rating given by a user to the suggestions provided by PRIORITY

as per the query specified by the user. The rating goes on a scale of 1 - 5, with 5 being the

highest. The ratings reflect the goodness or badness of the suggestion by PRIORITY and thus can

be considered while providing suggestions to the users. The table consisted of only a few entries

and thus was not further accounted for while developing the new dataset.

3.2.2.3 Text Feedback

Feedback in the form of comments is stored within this table. Users are provided with a textbox

where they can input any comment about the suggestion offered by PRIORITY webiste. Upon

close inspection of the table, it was observed that it only consisted of a few entries, several of

which were dummy entries to check the functioning of the feedback. Thus, this was also not pur-

sued any further.

Only the ‘Feedback’ table was used to make changes to the pre-existing labels per the user’s

suggestions according to the ‘feedback’ table. The rest of the tables were ignored due to the small

amount of data present in them (most of which was dummy data).

3.2.3 Template Copied

The category “template_copied” implies that the user copied the template of the provided sug-

gestion for the problem type searched by the user. This does not ensure if the suggestion proved

12



3.2. Data Curation: 13

useful for the user as the template can be generic and thus could have been copied by the user for

some other purpose.

The first step was to check if there was any overlap between the “template_copied”, “statement_copied”

and “solution_copied”. If any “template_copied” instance was also classified as one of the latter

two, that would mean the suggestion would be useful. Overlappings were checked by checking

for problem ID, as each problem is assigned a unique problem ID. We found out that there are no

overlaps between any of the categories.

The next step was to inspect the templates of the “template_copied” instances. The number of

“template_copied” instances was small, and thus we decided to go with manual inspection. Upon

inspection, we discovered that the templates were not generic and were unique to the problem

statement, implying that the suggested problem was useful to the user. Thus, we decided to classify

the “template_copied” instances as instances that might have been found to be useful by the user.

Further criteria were required to concretize if the provided suggestions were found to be useful or

not.

3.2.4 Dwell Time

The time a user spends on a selected problem is called the dwell time. Dwell time helps us to get

a concrete opinion on whether the problem suggestion provided by PRIORITY is helpful or not

for cases where it has not been explicitly mentioned by the user. Thus, implicit feedback storage

is used here.

As stated earlier, the "clicks" table contains a " category " field. The field specifies the action

performed by the user. By combining the dwell time and the category field, we can obtain infor-

mation on whether the provided suggestion was useful or not. Take a look again at the "category"

column:

• Template_copied

• Statement_copied

• Solution_copied

• Navigate

By their definitions, “template_copied”, “statement_copied”, and “solution_copied” all imply

that the user found the suggestion to be useful, and thus we classify such instances as “Hard Yes”.

For instance, with the category “navigate”, dwell time comes into play. It is possible that some

“navigate” instances are of use while others can simply be ignored. By fixing a time range or

interval of the dwell time, the useful instances of the navigate categories can be picked out and

thus can be classified as “Soft Yes” meaning that there are chances that the provided suggestion

was useful for the user, but we cannot ensure that.

13



14 Chapter 3. PRIORITY

Figure 3.11: Combined plot of navigate, template_copied, solution_copied, statement_copied

(a) Histogram plot for solution_copied instances (b) Histogram plot for statement_copied instances

Figure 3.12: Histogram plot for solution_copied and statement_copied instances

We plotted histograms for each of the categories. The histogram was plotted for dwell time.

The X-axis contained bins, while the Y-axis contained the number of instances for each dwell

time. The purpose was to observe the overlapping between the plots of the different categories

with the “navigate” category. The overlapping time intervals will give the time range for the dwell

time in the “navigate” category. All of the instances thus falling within the given time interval for

“navigate” can be classified as “Weak Yes”.

As we can observe from the plots, the number of instances with the category “navigate” out-

numbers the rest of the categories. This results in difficulty inspecting the time intervals for over-

lapping between the two sets of categories as the overlapping histogram is challenging to interpret.

Thus, a different methodology to check for overlapping intervals is required.

An alternative tried for this was to place different threshold limits over the dwell time for the

“navigate” instances to take a reasonable time range and also to simmer down the number of cases

and then re-try for the histograms. Different threshold values were tried, which can be seen in the

14



3.2. Data Curation: 15

(a) Histogram plot for navigate instances (b) Histogram plot for template_copied instances

Figure 3.13: Histogram plot for navigate and template_copied instances

table below:

Threshold value (in seconds) Number of entries
No threshold 415
700 387
500 380
100 344
50 302
30 256
20 222
10 143
5 57

Table 3.1: Number of entries with category as "navi-
gate" corresponding to different threshold values.

Even with a small threshold limit, “navigate” still has significantly more instances than the

other three categories, which will still prove difficult to interpret from the combined histogram.

Thus, an alternative method to plotting histograms and inspecting them was required.

3.2.5 Gamma Distribution

We moved on to the idea of finding a time interval via distribution after the drawbacks of the

histogram method. The first step was to select the distribution, summarize, and explain the data

corresponding to the dwell time for each category instance. In machine learning, instead of storing

all of the points, we can explain the points via a distribution that is represented by the mean and

standard deviation.

The Gaussian distribution [1], which is a very popular distribution, was our first choice. How-

ever, if the data can never have negative values, then Gaussian is not a good summary since the

summary by a Gaussian will say that the data has some non-zero probability of being negative as

well, whereas, in reality, we know that the data can never ever be negative. As we are trying to fix

a distribution over the dwell time, there won’t be any negative values in the data. This resulted in

15
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us searching for alternatives that suit our use case and criteria.

Gamma distribution proved to be the perfect candidate. It is used to explain/summarize quan-

tities like time duration (dwell time in our case), which never take any negative values and thus,

as per its structure, will show the probability of data being negative as zero.

The gamma distribution provides an interval function support [8] which allows us to find out

the interval (time interval in our case) after specifying a “confidence” parameter value. The pa-

rameter enables us to specify a percentile value. For example, we used a confidence value of 0.9,

implying that we are looking for an interval range containing the 90 percentile of the data. This

allows us to eliminate instances corresponding to small and large dwell time values because, as

stated earlier, these values do not help us draw valuable conclusions from the user activity.

For all four categories, first, the gamma distribution is fitted and then, using the interval func-

tion, a confidence interval or time interval is found containing about 90 percentile of the data

values. The time interval enables us to perform classification of the “navigate” category data into

“Weak Yes”.

We inspected the obtained interval values for each of them and observed that the interval for

the category “template_copied” was entirely inside of “solution_copied” and “statement_copied”.

Thus, “template_copied” was ignored moving forward. We proceeded next with what we called

"Discrete Labelling."

A choice was in front of us with the confidence intervals of the “statement_copied” and

“solution_copied” categories. We decided to proceed with the union of the intervals as it would

give us a more extensive time range to work with. Any instances of the “navigate” category with

a dwell time lying in the new unionized interval were classified as “Weak Yes”, while the other

instances not satisfying the criteria were not classified into any category and were left unclassified.

A note here is that we could have taken the intersection of the intervals as well, but that would

have resulted in a narrower interval and restricted us from incorporating as much user feedback as

possible.

3.2.6 “Hard Yes” and “Weak Yes”

As stated before, the instances belonging to the categories: "template_copied", "statement_copied",

"solution_copied" were all classified as "Hard Yes" due to them being useful for the user. The in-

stances of the category "navigate" are classified as "Weak Yes" that have overlapping dwell time

intervals with the above three categories (found with the help of gamma distribution).

The purpose of classifying the instances as “Hard Yes” and “Weak Yes” is to assign each in-

stance a suitable weight. The weightage will act as importance or significance that is given to

16



3.2. Data Curation: 17

each of the classified instances. For this, we used instance weightage instead of class weightage,

as weighing by instances allows us to go instance by instance. We gave “Hard Yes” classified

instances a weight of 1, indicative that such instances are of concrete usage to us, while we per-

formed several experiments with different weights for the “Weak Yes” instances. The instances

classified as neither “Hard Yes” nor “Weak Yes”, were assigned a weight of 0.

The challenge was to create or split the dataset into training and testing sets. The training

set needs to consist of labelled and unlabelled data instances, while the testing can only consist

of labelled data instances. This meant avoiding the random splitting of the dataset and manually

splitting it. From the previous iterations of PRIORIRTY [10] [6], we discovered that a ratio of 3:1

works pretty well, with 3 instances of each label going to the training set and 1 instance of the

same label going to the test set.

Another reason for manual splitting is that we specify the sample weights for each instance

in our training set. A random split would mean a random assignment of weights to the instances

irrespective of them being classified as “Hard Yes” or “Weak Yes”. Though manual splitting does

reduce the randomness of the splitting, it is required for the reasons stated above.

3.2.7 Re-annotations

The re-annotations or modifications suggested or offered by the user to PRIORITY were also ac-

commodated in the new dataset. The “Weak Yes” instances were not added to the test set. For the

test set, we cannot have labelled data instances we are unsure of; thus, the “Weak Yes” instances

are avoided.

They are added to the training set to improve the data and add to it over which the model

learns. If the problem was previously found to be unlabelled, it is labelled using the suggested

annotations or labels suggested by the user (recorded in the feedback table). And if the problem

is already labelled, then a duplicate of the problem with the suggested labels by the user is added

to the dataset. This results in the same problem having multiple entries in the dataset but with

different problem labels assigned to them.

As “Hard Yes” instances are more about concrete feedback, they are accommodated in both

the training and test set splits. If a problem classified as “Hard Yes” is found to be present in the

test set, then it is duplicated with the user-suggested labels. While if a problem belonging to the

training set has been classified as a “Hard Yes” instance by us, it will follow the same route as

the “Weak Yes” classified instances, i.e., if it is already labelled, then we will duplicate it with

the suggested labels by the user, and if it is not labelled, then the problem is labelled with the

suggested labels.

This method also allowed us to increase the count of labelled instances while the number of

unlabelled instances either remaining the same or decreasing.

17
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A point to note is that, following the format of the previous iterations of Priority [10] [6], the

labels have been added in the string format for ease of representation and use.

(labels for each of the instances (if they are labelled) are represented as a list. Whereas, the

unlabelled instances, are either represented by “NaN”, an empty list, i.e., [] or by “” indicating the

same)

3.3 Comparison : Old Dataset vs. New Dataset

As per[6] [10] Priority uses BalancedBaggingClassifier, part of the Imblearn library [7]. While the

previous iteration focused on label propagation via both probability [10] and confidence score, the

newly curated dataset focuses on accommodating user feedback, which in theory should prove to

be a much more reliable method than the former ones. To test this out, the same model was trained

and tested on both the older dataset and the new dataset. As we know from [10] Priority labels any

of the problems in its dataset to 11 major labels. The metrics for comparison are the exact same

which have been used by [6] [10] for reporting the results in their findings. This is done to ease

comparison and to keep the comparison fair as well. The overall results as well as the label wise

results have been shown below:

New Dataset -

Hamming own 0.79

Hamming np 0.20

Ones acc 0.44

TP 76 TN 451 FP 37 FN 96

Total Positives 172.0

Precision 0.67

Recall 0.44

Old Dataset -

Hamming own 0.79

Hamming np 0.20

First 0.80

Ones acc 0.66

TP 115 TN 412 FP 76 FN 57

Total Positives 172.0

Precision 0.60

Recall 0.66

TP : True Positive(s) TN : True Negatives(s) FP : False Positive(s) FN : False Negative(s)

18



3.4. Bagging Classifier 19

Labels Metric New Dataset Old Dataset
Arithmetic Precision 0.58 0.64

Recall 0.33 0.52

Loops
Precision 0.75 0.78

Recall 0.53 0.66

TerminalIO Precision 0.45 0.47

Recall 0.41 0.66

Arrays
Precision 0.66 0.51

Recall 0.63 0.89

Pointers
Precision 0.33 0.28

Recall 0.4 0.8

Conditionals Precision 0.6 0.625

Recall 0.40 0.45

Structures Precision 1.0 0.75

Recall 0.4 0.6

Char-

string

Precision 0.75 0.4

Recall 0.42 0.57

Functions Precision 0.92 0.80

Recall 0.41 0.80

Algorithms Precision 0.66 0.43

Recall 0.18 0.63

From the results, we inferred that, the model produced a higher precision but a lower recall on

the new dataset. This implies that the model is conservative in making the predictions as the recall

is low. The positives classified are fewer in number, but a good chunk of them are correct.

For the old dataset, we observed a lower precision but a higher recall value, indicating that the

model was much more liberal in making its predictions. It made more positives but got fewer of

them correct.

The conservative nature of the model could be attributed to the elimination of the label pro-

pogation and focusing solely on user feedback. Label propagation introduced an element of learn-

ing for the model in which it labelled the unlabelled problems in the dataset. This allowed the

model to be much more liberal with its predictions.

3.4 Bagging Classifier

As our methodology requires sample weights to be assigned to each of the instances based upon

their classification, which we performed earlier, we required instance based weighing rather than

class based. The Balanced-Bagging-Classifier does not provide such functionality, which means

looking for alternatives but with the constraint of similar functionality to Balanced-Bagging-

Classifier which could enable us to compare our results and findings.
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20 Chapter 3. PRIORITY

Bagging-Classifier [9] is a classifier part of the sklearn library largely resembling the struc-

ture of Balanced-Bagging-Classifier. Decision Trees as base estimators were used for both of the

classifiers. Unlike the Balanced-Bagging-Classifier, Bagging-Classifier has the fit function. The

fit function allows us to specify an array called “sample_weights” which contains the weights

instance-wise for the training input values.

We experimented with the different weights (assigned to the “Weak Yes”) and observed the

outputs in terms of precision, recall and f-score for each of the label and overall as well with the

objective of comparing the performance with the previous works and also to find out the weights

for which a balanced precision-recall value can be found.

3.5 Precision and Recall

We incremented the instance weights from 0.5 to 1 using Bagging-Classifier as the model. The

reason behind this increment was to make sure that the newly curated dataset diverges from the

old dataset. If the “Weak Yes” are assigned with less and less weights, then this would mean

focusing mostly on the instances which were also part of the older dataset. Keeping this in mind,

we changed the model weights and made the required modifications to the model and recorded the

results:

Weight for the soft yes instances taken : 0.55

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 10 44 1 11 0.90 0.47
Loops 39.0 21 21 6 18 0.77 0.53
TerminalIO 12.0 4 48 6 8 0.4 0.33
Arrays 19.0 12 36 11 7 0.52 0.63
Pointers 5.0 2 58 3 3 0.4 0.4
Conditionals 22.0 11 38 6 11 0.5 0.64
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 4 57 2 3 0.66 0.57
Functions 31.0 18 35 0 13 1.0 0.58
Algorithms 11.0 2 54 1 9 0.66 0.18

Table 3.2: Label wise results for dynamic weights on taking
the average for weight = 0.55

Hamming own 0.81

Hamming np 0.18

Ones acc 0.5

TP 86 TN 452 FP 36 FN 86
Total Postives 172.0
Overall Prec 0.70
Overall Recall 0.5

20



3.5. Precision and Recall 21

Weight for the soft yes instances taken : 0.6

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 9 42 3 12 0.75 0.42
Loops 39.0 22 21 6 17 0.78 0.56
TerminalIO 12.0 4 49 5 8 0.44 0.33
Arrays 19.0 11 41 6 8 0.64 0.57
Pointers 5.0 2 57 4 3 0.33 0.4
Conditionals 22.0 9 40 4 13 0.69 0.40
Structures 5.0 2 60 1 3 0.66 0.4
Char-String 7.0 2 58 1 5 0.66 0.28
Functions 31.0 17 33 2 14 0.89 0.54
Algorithms 11.0 1 55 0 10 1.0 0.09

Table 3.3: Label wise results for dynamic weights on taking
the average for weight = 0.6

Hamming own 0.81

Hamming np 0.18

Ones acc 0.45

TP 79 TN 456 FP 32 FN 93
Total Positives 172.0
Overall Prec 0.71
Overall Recall 0.45

Weight for the soft yes instances taken : 0.65

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 8 42 3 13 0.72 0.38
Loops 39.0 21 20 7 18 0.75 0.53
TerminalIO 12.0 5 49 5 7 0.5 0.41
Arrays 19.0 9 38 9 10 0.5 0.47
Pointers 5.0 1 57 4 4 0.2 0.2
Conditionals 22.0 7 38 6 15 0.53 0.31
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 4 59 0 3 1.0 0.57
Functions 31.0 17 35 0 14 1.0 0.54
Algorithms 11.0 1 55 0 10 1.0 0.09

Table 3.4: Label wise results for dynamic weights on taking
the average for weight = 0.65

Hamming own 0.80

Hamming np 0.19

Ones acc 0.436046511627907

TP 75 TN 454 FP 34 FN 97
Total Positives 172.0
Overall Prec 0.68
Overall Recall 0.43
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Weight for the soft yes instances taken : 0.7

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 7 44 1 14 0.87 0.33
Loops 39.0 22 21 6 17 0.78 0.56
TerminalIO 12.0 6 52 2 6 0.75 0.5
Arrays 19.0 11 40 7 8 0.61 0.57
Pointers 5.0 3 55 6 2 0.33 0.6
Conditionals 22.0 8 39 5 14 0.61 0.36
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 3 58 1 4 0.75 0.42
Functions 31.0 16 33 2 15 0.88 0.51
Algorithms 11.0 2 55 0 9 1.0 0.18

Table 3.5: Label wise results for dynamic weights on taking
the average for weight = 0.7

Hamming own 0.81

Hamming np 0.18

Ones acc 0.46

TP 80 TN 458 FP 30 FN 92
Total Positives 172.0
Overall Prec 0.7272727272727273
Overall Recall 0.46511627906976744

Weight for the soft yes instances taken : 0.8

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 7 43 2 14 0.77 0.33
Loops 39.0 21 21 6 18 0.77 0.53
TerminalIO 12.0 7 49 5 5 0.58 0.58
Arrays 19.0 9 39 8 10 0.52 0.47
Pointers 5.0 2 57 4 3 0.33 0.4
Conditionals 22.0 6 36 8 16 0.42 0.27
Structures 5.0 2 60 1 3 0.66 0.4
Char-String 7.0 4 56 3 3 0.57 0.57
Functions 31.0 16 34 1 15 0.94 0.51
Algorithms 11.0 2 55 0 9 1.0 0.1818

Table 3.6: Label wise results for dynamic weights on taking
the average for weight = 0.8

Hamming own 0.79

Hamming np 0.20

Ones acc 0.44

TP 76 TN 450 FP 38 FN 96
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Total Positives 172.0
Overall Prec 0.66
Overall Recall 0.44

Weight for the soft yes instances taken : 0.9

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 11 43 2 10 0.84 0.52
Loops 39.0 23 20 7 16 0.76 0.58
TerminalIO 12.0 4 53 1 8 0.8 0.33
Arrays 19.0 9 38 9 10 0.5 0.47
Pointers 5.0 4 57 4 1 0.5 0.8
Conditionals 22.0 8 37 7 14 0.53 0.36
Structures 5.0 3 61 0 2 1.0 0.6
Char-String 7.0 3 56 3 4 0.5 0.42
Functions 31.0 16 33 2 15 0.88 0.51
Algorithms 11.0 3 53 2 8 0.6 0.27

Table 3.7: Label wise results for dynamic weights on taking
the average for weight = 0.9

Hamming own 0.81

Hamming np 0.18

Ones acc 0.48

TP 84 TN 451 FP 37 FN 88
Total Positives 172.0
Overall Prec 0.69
Overall Recall 0.48

Weight for the soft yes instances taken : 1

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 7 44 1 14 0.87 0.33
Loops 39.0 21 22 5 18 0.80 0.53
TerminalIO 12.0 8 51 3 4 0.72 0.66
Arrays 19.0 11 36 11 8 0.5 0.57
Pointers 5.0 3 57 4 2 0.42 0.6
Conditionals 22.0 6 39 5 16 0.54 0.27
Structures 5.0 3 61 0 2 1.0 0.6
Char-String 7.0 3 57 2 4 0.6 0.42
Functions 31.0 18 33 2 13 0.9 0.58
Algorithms 11.0 3 53 2 8 0.6 0.27

Table 3.8: Label wise results for dynamic weights on taking
the average for weight = 1

Hamming own 0.81

Hamming np 0.18

Ones acc 0.48
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TP 83 TN 453 FP 35 FN 89
Total Positives 172.0
Overall Prec 0.70
Overall Recall 0.48

As evident from the results above, there is not much change in recall with an increase in

weight, but there is a significant change in precision with the change in weight. The same model

at different weights can be thought of as different models. Even though a few models did not

produce good enough overall precision-recall, some labels did get good scores for these models,

so saving them for future reference can be helpful.

We also plotted the label-wise precision-recall with the varying weights as well as the overall

precision-recall with the weights, which can be seen later on in this section.

At first glance, the “Weak Yes” doesn’t seem trustworthy because of the high precision and

recall at the lower weights. To verify this, we calculated and plotted the precision-recall for the

lower weights starting from 0 to 0.5 . The collected results can be seen below:

Weight for the soft yes instances taken : 0

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 7 45 0 14 1.0 0.33
Loops 39.0 27 18 9 12 0.75 0.69
TerminalIO 12.0 4 47 7 8 0.36 0.33
Arrays 19.0 8 38 9 11 0.47 0.42
Pointers 5.0 2 58 3 3 0.4 0.4
Conditionals 22.0 11 33 11 11 0.5 0.5
Structures 5.0 1 61 0 4 1.0 0.2
Char-String 7.0 4 58 1 3 0.86 0.61
Functions 31.0 19 32 3 12 0.9 0.58
Algorithms 11.0 3 54 1 8 0.75 0.27

Table 3.9: Label wise results for dynamic weights on taking
the average for weight = 0

Hamming own 0.80

Hamming np 0.19

Ones acc 0.5

TP 86 TN 444 FP 44 FN 86
Total Positives 172.0
Overall Prec 0.66
Overall Recall 0.5

Weight for the soft yes instances taken : 0.1

Hamming own 0.8
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Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 10 43 2 11 0.83 0.47
Loops 39.0 23 19 8 16 0.74 0.58
TerminalIO 12.0 6 49 5 6 0.54 0.5
Arrays 19.0 9 39 8 10 0.52 0.47
Pointers 5.0 2 58 3 3 0.4 0.4
Conditionals 22.0 7 35 9 15 0.43 0.31
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 3 56 3 4 0.5 0.42
Functions 31.0 14 35 0 17 1.0 0.45
Algorithms 11.0 2 55 0 9 1.0 0.18

Table 3.10: Label wise results for dynamic weights on taking
the average for weight = 0.1

Hamming np 0.2

Ones acc 0.45

TP 78 TN 450 FP 38 FN 94
Total Positives 172.0
Overall Prec 0.67
Overall Recall 0.45

Weight for the soft yes instances taken : 0.2

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 8 44 1 13 0.88 0.38
Loops 39.0 21 19 8 18 0.72 0.53
TerminalIO 12.0 6 49 5 6 0.54 0.5
Arrays 19.0 9 39 8 10 0.58 0.52
Pointers 5.0 4 57 4 1 0.5 0.8
Conditionals 22.0 6 38 6 16 0.5 0.27
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 2 56 3 5 0.4 0.28
Functions 31.0 16 35 0 15 1.0 0.51
Algorithms 11.0 1 54 1 10 0.5 0.09

Table 3.11: Label wise results for dynamic weights on taking
the average for weight = 0.2

Hamming own 0.80

Hamming np 0.19

Ones acc 0.44

TP 76 TN 453 FP 35 FN 96
Total Positives 172.0
Overall Prec 0.68
Overall Recall 0.44
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Weight for the soft yes instances taken : 0.3

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 10 42 3 11 0.76 0.47
Loops 39.0 26 22 5 13 0.83 0.66
TerminalIO 12.0 6 52 2 6 0.75 0.5
Arrays 19.0 7 38 9 12 0.43 0.36
Pointers 5.0 3 58 3 2 0.5 0.6
Conditionals 22.0 7 39 5 15 0.58 0.31
Structures 5.0 1 61 0 4 1.0 0.2
Char-String 7.0 4 58 1 3 0.8 0.57
Functions 31.0 16 34 1 15 0.94 0.51
Algorithms 11.0 1 54 1 10 0.5 0.09

Table 3.12: Label wise results for dynamic weights on taking
the average for weight = 0.4

Hamming own 0.81

Hamming np 0.18

Ones acc 0.47

TP 81 TN 458 FP 30 FN 91
Total Positives 172.0
Overall Prec 0.72
Overall Recall 0.47

Weight for the soft yes instances taken : 0.4

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 8 44 1 13 0.88 0.38
Loops 39.0 23 23 4 16 0.85 0.58
TerminalIO 12.0 5 51 3 7 0.625 0.41
Arrays 19.0 12 42 5 7 0.70 0.63
Pointers 5.0 2 56 5 3 0.28 0.4
Conditionals 22.0 4 39 5 18 0.44 0.18
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 3 59 0 4 1.0 0.42
Functions 31.0 18 35 0 13 1.0 0.58
Algorithms 11.0 2 55 0 9 1.0 0.18

Table 3.13: Label wise results for dynamic weights on taking
the average for weight = 0.3

Hamming own 0.82

Hamming np 0.17

Ones acc 0.45
TP 79 TN 465 FP 23 FN 93
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Figure 3.14: Overall precision-recall vs weight variation

total Positives 172.0
Overall Prec 0.77
Overall Recall 0.45

Weight for the soft yes instances taken : 0.45

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 10 43 2 11 0.83 0.47
Loops 39.0 22 22 5 17 0.81 0.56
TerminalIO 12.0 5 50 4 7 0.55 0.41
Arrays 19.0 13 38 9 6 0.59 0.68
Pointers 5.0 2 57 4 3 0.33 0.4
Conditionals 22.0 7 41 3 15 0.70 0.31
Structures 5.0 3 61 0 2 1.0 0.6
Char-String 7.0 4 59 0 3 1.0 0.57
Functions 31.0 17 33 2 14 0.89 0.54
Algorithms 11.0 3 54 1 8 0.75 0.27

Table 3.14: Label wise results for dynamic weights on taking
the average for weight = 0.45

Hamming own 0.82

Hamming np 0.17

Ones acc 0.5

TP 86 TN 458 FP 30 FN 86
Total Positives 172.0
Overall Prec 0.74
Overall Recall 0.5

From the graphs we can observe that the modifications we did for the construction of the new
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(a) Label Arithmetic (b) Label Loops

Figure 3.15: Precision-recall vs weight plot for Labels: Arithmetic and Loops

(a) Label Terminal IO (b) Label Arrays

Figure 3.16: Precision-recall vs weight plot for Labels: Terminal IO and Arrays

dataset, proves to be beneficial to some of the labels. "Terminal IO" and "Char-string" are the

labels which sees a drastic improvement in precision and recall at some of the weights. The Label

(a) Label Pointers (b) Label Conditionals

Figure 3.17: Precision-recall vs weight plot for Labels: Pointers and Conditionals
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(a) Label Structures (b) Label Char-string

Figure 3.18: Precision-recall vs weight plot for Labels: Structures and Char-string

(a) Label Functions (b) Label Algorithms

Figure 3.19: Precision-recall vs weight plot for Labels: Functions and Algorithms

"Arrays" observes the same pattern with an increase in both precision and recall from weights 0.3

to 0.4 .

The label "Conditionals" doesn’t gain the same benefits as the previously mentioned labels.

The range in which precision increases, we see a decrease in recall and vice-versa is true as well.

The label "Functions" is not much affected by the modifications. The label "Structures" is a

rare label because of the low number of problems/instances it has been assigned/labelled to with.

3.6 Dynamic weights

Previously, we assigned instances classified as “Hard Yes” with a weight of 1 and experimented

with different weights for the “Weak Yes” instances. Those weights were static in nature. We de-

cided to try dynamic weights for the “Weak Yes” instances for more flexibility and label suitability.
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Figure 3.20: Overall Precision, Recall and Fscore variations with weights

For every label, we found out the weight that produced the highest f-measure or the f-score.

Even though precision and recall are metrics that are more intuitive, comparing algorithms as well

as results with each other on the basis of these two metrics is not easy to interpret. F-score helps

by combining these two metrics into one.

Using the previously calculated and stored data, we found the weights giving the highest f-

measure for each of the labels. The values can be seen below:

Labels Maximum F-score Weight
Arithmetic 0.64 0.9
Loops 0.74 0.3
TerminalIO 0.69 1.0
Arrays 0.66 0.4
Pointers 0.61 0.2
Conditionals 0.51 0.6
Structures 0.75 0.9
Char-String 0.66 0.0
Functions 0.73 0.4
Algorithms 0.54 0.7

Table 3.15: Label wise maximum f-score corre-
sponding to the weight

After finding out the weights for each of the labels, we dynamically calculated the instance

weights for each of the “Weak Yes” instances. As we know, a problem can be categorized into

multiple labels. For each of the labels, we have the weight associated with them. We calculate

the average of the weights for each of the “Weak Yes” classified instances and assign that as the

instance weight. This is more dynamic than the previous approach of assigning the whole instance

with one fixed weight. This approach takes into account the label wise weight-age which we found

via the f-measure and rather than each of the instance getting assigned the same weight, now in-

stead, each of the instance weight depends upon the labels present.
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Figure 3.21: Label wise F-score variation with weights

The results obtained have been provided below:

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 10 42 3 11 0.76 0.47
Loops 39.0 23 19 8 16 0.74 0.58
TerminalIO 12.0 7 48 6 5 0.53 0.58
Arrays 19.0 9 39 8 10 0.52 0.47
Pointers 5.0 4 55 6 1 0.4 0.8
Conditionals 22.0 6 39 5 16 0.54 0.27
Structures 5.0 1 61 0 4 1.0 0.2
Char-String 7.0 3 59 0 4 1.0 0.42
Functions 31.0 13 34 1 18 0.92 0.41
Algorithms 11.0 3 54 1 8 0.75 0.27

Table 3.16: Label wise results for dynamic weights on taking
the average

Hamming own 0.80

Hamming np 0.19

Ones acc 0.45

TP 79 TN 450 FP 38 FN 93
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Total Positives 172.0
Overall Precision 0.67
Overall Recall 0.45

A precision of 1 for some of the labels (structures and char-string) provided good results for

the experiment.

Upon close inspection of the results, we observed that an average weight of 0.45 provides the

best possible results in terms of overall precision and recall. Based on this, we hypothesized that

by taking the average, the overall weight is getting pulled down, which leads to not obtaining the

best possible overall results. To verify this hypothesis, we tried other approaches besides taking

the average.

As stated above, for each of the “Weak Yes” classified instances, we found the weight produc-

ing the highest f-measure and then took the average for all of the labels and assigned that to be

the instance weight for the Bagging-Classifier model. For hypothesis testing, we tried to take the

minimum and the maximum of the label weights instead of the average.

Taking the maximum would result in an increased weight or a higher weight than the average

while taking the minimum would result in a decreased weight or a lower weight than the average.

Thus, taking the minimum and the maximum would allow us to inspect results for the two opposite

ends of the weight spectrum.

The results for both the minimum and maximum cases are provided below:

3.6.1 Results For dynamic weights (Maximum) -

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 7 44 1 14 0.875 0.33
Loops 39.0 20 24 3 19 0.86 0.51
TerminalIO 12.0 8 48 6 4 0.57 0.66
Arrays 19.0 11 40 7 8 0.61 0.57
Pointers 5.0 3 56 5 2 0.375 0.6
Conditionals 22.0 8 39 5 14 0.61 0.36
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 4 57 2 3 0.66 0.57
Functions 31.0 14 32 3 17 0.82 0.45
Algorithms 11.0 4 54 1 7 0.8 0.36

Table 3.17: Label wise results for dynamic weights on taking
the maximum

Hamming own 0.81

Hamming np 0.18

Ones acc 0.47
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TP 81 TN 455 FP 33 FN 91
Total Postives 172.0
Overall Prec 0.71
Overall Recall 0.47

3.6.2 Results For dynamic weights (Minimum) -

Labels Total TP TN FP FN Precision Recall
Arithmetic 21.0 9 43 2 12 0.81 0.42
Loops 39.0 24 22 5 15 0.82 0.61
TerminalIO 12.0 5 49 5 7 0.5 0.41
Arrays 19.0 12 41 6 7 0.63 0.66
Pointers 5.0 2 58 3 3 0.4 0.4
Conditionals 22.0 7 39 5 15 0.58 0.31
Structures 5.0 2 61 0 3 1.0 0.4
Char-String 7.0 4 58 1 3 0.8 0.57
Functions 31.0 17 34 1 14 0.94 0.54
Algorithms 11.0 3 54 1 8 0.75 0.27

Table 3.18: Label wise results for dynamic weights on taking
the minimum

Hamming own 0.82

Hamming np 0.17

Ones acc 0.49

TP 85 TN 459 FP 29 FN 87
Total Postives 172.0
Overall Prec 0.74
Overall Recall 0.49

Our earlier assumptions were that we were getting better results at higher weights and that

the averaging of the weights was pulling the weights down. However, upon taking the minimum

and the maximum instead of averaging them out, we found that we were getting a better output

corresponding to the minimum.

Upon tracking the minimum weights that were found for each of the “Weak Yes”, we found

that the weights with the highest occurrences are 0.3 and 0.4. After inspecting the results for the

dynamic weights (minimum), we observed that the same weights, i.e., weights of 0.3 and 0.4,

produced the best precision-recall amongst the possible weights.

The high occurrences of the weights: 0.3 and 0.4 are the reasons for the relatively lower weight

average, and the higher weights were, in fact, pulling the weights up. This proved our earlier hy-

pothesis wrong. However, after accommodating feedback from the user, we obtained improved

results than in the previous iteration of the work done in PRIORITY.
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CHAPTER 4

Conclusion

In this thesis, we presented various optmisiations to the working of PRIORITY. We introduced the

use of confidence scores and threshold in the label propagation method. Earlier, the label prop-

agation had no threshold to stop for, and thus this resulted in labelling all of the unlabelled data.

By introducing a confidence or threshold, we placed a cut-off on the procedure, only allowing the

labelling of those instances about which the model is highly confident. The graphs provided for

comparison show a minor improvement in the results. This resulted in speedup as well due to an

early stoppage in the label propagation.

Feedback is a strong tool, which was missing in the previous work. We also curated a new

dataset to incorporate the feedback that is stored by Priority. We classified the feedback as “Hard

Yes” and “Weak Yes”, and then experimented with the different weights to be assigned to the

“Weak Yes” instances ranging from 0 to 1 with an ensemble learning algorithm as the base classi-

fier.

Furthermore, we moved away from the idea of static weights and tested with dynamic weights,

which resulted in an improvement in both precision and recall collectively, as can be seen from

the tables included.
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CHAPTER 5

Appendix

5.1 Labels used in PRIORITY:

As per [10] the labels used in Priority can be seen below :

1. Difficulty [1,2,3,4,5]

• 1. Very easy

• 2 : Easy

• 3 : Medium

• 4 : Difficult

• 5 : Very difficult

2. Terminal IO [ Basic, Advanced ]

• Basic : simple IO with various data-types, use of escape sequences

• Advanced : pretty patterns/word art/non-trivial formatting, format specifiers e.g. %5.4f
or %0.2e, heavily formatted input e.g. (%d-%d-%d) to input (02-12-89)

3. Arithmetic [ Basic, Advanced, Bit ]

• Basic : simple arithmetic operations (+,-,*,/,%,++,–), expressions, bracketing

• Advanced : mixed type operations (e.g. long+int), explicit typecasting, math.h

• Bit : use of bit-wise operators, left/right shift, bit masks

4. Conditionals [ Basic, Switch, Advanced, Flag ]

• Basic : simple if/if-else statements, relational and logical operators

• Switch : use of switch statements

• Advanced : use of nested conditionals, ternary statements

• Flag : use of flags e.g. isSorted, isFirstIteration

5. Loops [ Basic, Advanced, In-variants ]

• Basic : simple use of for, while, do-while loops

• Advanced : nested loops, use of break/continue, use of infinite while loops e.g. while(1)...
and loops with empty headers e.g. for(;;)...

• In-variants : Use of partial sums, running counts, running products and others

6. Arrays [ Basic, Advanced, Memory ]

• Basic : 1D numeric arrays, creation, traversal, modification

• Advanced : 2D or nD arrays

• Memory : memory management using sizeof, malloc, calloc, realloc, free, stdlib.h

7. Pointers [ Basic, Advanced ]
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• Basic : referencing, dereferencing, pointer arithmetic

• Advanced : arrays of pointers, pointers to pointers

8. Char-String [ Basic, Advanced ]

• Basic : character IO, character arithmetic, string IO, NULL, EOF

• Advanced : sub-string manipulation, strings and pointers, string.h

9. Functions [ Basic, Advanced ]

• Basic : one or more scalar arguments and scalar return

• Advanced : pointer/reference/array arguments, pointer/reference/array return

10. Structures [ Basic, Advanced, DS ]

• Basic : storing user input in structures, arrays of structures

• Advanced : pointers to structures, nested structures

• DS : use/implementation of data structures e.g. linked list, stacks, (circular) queues,
trees, graphs possibly using struct, or even using arrays

11. Algorithms [ DC, Recursion, Greedy, DP ]

• DC : divide and conquer, bisection search etc

• Recursion : self/mutual recursion

• Greedy : greedy algorithms

• DP : dynamic programming
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