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Abstract

This paper defines a set of type inference rules for resolving
overloading introduced by type classes. Programs including
type classes are transformed into ones which may be typed
by the Hindley-Milner inference rules. In contrast to other
work on type classes, the rules presented here relate directly
to user programs. An innovative aspect of this work is the
use of second-order lambda calculus to record type informa-
tion in the program.

1 Introduction

A funny thing happened on the way to Haskell [HPW92].
The goal of the Haskell committee was to design a standard
lazy functional language, applying existing, well-understood
methods. To the committee’s surprise, it emerged that there
was no standard way to provide overloaded operations such
as equality (==), arithmetic (+), and conversion to a string
(show).

Languages such as Mirandal[Tur85] and Standard ML
[MTH90, MT91] offer differing solutions to these problems.
The solutions differ not only between languages, but within
a language. Miranda uses one technique for equality (it is
defined on all types — including abstract types on which it
should be undefined!), another for arithmetic (there is only
one numeric type), and a third for string conversion. Stan-
dard ML uses the same technique for arithmetic and string
conversion (overloading must be resolved at the point of ap-
pearance), but a different one for equality (type variables
that range only over equality types).

The committee adopted a completely new technique, based
on a proposal by Wadler, which extends the familiar
Hindley-Milner system [Mil78] with type classes. Type
classes provide a uniform solution to overloading, includ-
ing providing operations for equality, arithmetic, and string
conversion. They generalise the idea of equality types from
Standard ML, and subsume the approach to string conver-
sion used in Miranda. This system was originally described
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by Wadler and Blott [WB89, Blo91], and a similar proposal
was made independently by Kaes [Kae88].

The type system of Haskell 1s certainly its most innovative
feature, and has provoked much discussion. There has been
closely related work by Rouaix [Rou90] and Comack and
Wright [CW90], and work directly inspired by type classes
includes Nipkow and Snelting [NS91], Volpano and Smith
[VS91], Jones [Jon92a, Jon93], Nipkow and Prehofer [NP93],
Odersky and Laufer [OdLa91], Laufer [Lau92, Lau93], and
Chen, Hudak and Odersky [CHO92].

The paper presents a source language (lambda calculus with
implicit typing and with overloading) and a target language
(polymorphic lambda calculus with explicit typing and with-
out overloading). The semantics of the former is provided
by translation into the latter, which has a well-known se-
mantics [Hue 90]. Normally, one expects a theorem stating
that the translation is sound, in that the translation pre-
serves the meaning of programs. That is not possible here,
as the translation defines the meaning of programs. It is a
grave shortcoming of the system presented here is that there
is no direct way of assigning meaning to a program, and it
must be done indirectly via translation; but there appears to
be no alternative. (Note, however, that [Kae88] does give a
direct semantics for a slightly simpler form of overloading.)

The original type inference rules given in [WB89] were de-
liberately rather sparse, and were not intended to reflect
the Haskell language precisely. As a result, there has been
some confusion as to precisely how type classes in Haskell

are defined.

1.1 Contributions of this paper

This paper spells out the precise definition of type classes in
Haskell. These rules arose from a practical impetus: our
attempts to build a compiler for Haskell. The rules were
written to provide a precise specification of what type classes
were, but we found that they also provided a blueprint for
how to implement them.

This paper presents a simplified subset of the rules we de-
rived. The full static semantics of Haskell[PW91] contains
over 30 judgement forms and over 100 rules. The reader
will be pleased to know that this paper simplifies the rules
considerably, while maintaining their essence in so far as



type classes are concerned. The full rules are more complex
because they deal with many additional syntactic features
such as type declarations, pattern matching, and list com-
prehensions.

This paper shows how the static analysis phase of our
Haskell compiler was derived by adopting directly the rules
wn the static semantics. This was generally a very straight-
forward task. In our earlier prototype compiler, and also in
the prototype compilers constructed at Yale and Chalmers,
subtleties with types caused major problems. Writing down
the rules has enabled us to discover bugs in the various pro-
totypes, and to ensure that similar errors cannot arise in
our new compiler.

We have been inspired in our work by the formal seman-
tics of Standard ML prepared by Milner, Tofte, and Harper
[MTH90, MT91]. We have deliberately adopted many of the
same techniques they use for mastering complexity.

This approach wunites theory and practice.  The indus-
trial grade rules given here provide a useful complement
to the more theoretical approaches of Wadler and Blott
[WB&9, Blo91], Nipkow and Snelting [NS91], Nipkow and
Prehofer [NP93], and Jones [Jon92a, Jon93]. A number
of simplifying assumptions made in those papers are not
made here. Unlike [WB89], it is not assumed that each
class has exactly one operation. Unlike [NS91], it is not
assumed that the intersection of every pair of classes must
be separately declared. Unlike [Jon92a], we deal directly
with instance and class declarations. Each of those papers
emphasises one aspect or another of the theory, while this
paper stresses what we learned from practice. At the same
time, these rules and the monad-based[Wad92] implementa-
tion they support provide a clean, ‘high-level’ specification
for the implementation of a typechecker, unlike more imple-
mentation oriented papers [HaBI89, Aug93, Jon92b].

A further contribution of this work is the use of explicit
polymorphism in the target language, as described in the
next section.

1.2 A target language with explicit poly-
morphism

As in [WB89, NS91, Jon92a], the rules given here specify
a translation from a source language with type classes to a
target language without them. The translation implements
type classes by introducing extra parameters to overloaded
functions, which are instantiated at the calling point with
dictionaries that define the overloaded operations.

The target language used here differs in that all polymor-
phism has been made explicit. In [WB89, NS91, Jon92a],
the target language resembles the implicitly typed polymor-
phic lambda calculus of Hindley and Milner [Hin69, Mil78,
DMS&2]. Here, the target language resembles the explicitly
typed second-order polymorphic lambda calculus of Girard

and Reynolds [Gir72, Rey74]. Tt has constructs for type ab-
straction and application, and each bound variable is labeled
with its type.

The reason for using this as our target language is that it
makes 1t easy to extract a type from any subterm. This
greatly eases later stages of compilation, where certain op-
timisations depend on knowing a subterm’s type. An alter-
native might be to annotate each subterm with its type, but
our method has three advantages.

o It uses less space. Types are stored in type applications
and with each bound variable, rather than at every sub-
term.

e It eases subsequent transformation. A standard and
productive technique for compiling functional lan-
guages is to apply various transformations at interme-
diate phases [Pey87]. With annotations, each transfor-
mation must carefully preserve annotations on all sub-
terms and add new annotations where required. With
polymorphic lambda calculus, the usual transformation
rules — e.g., f-reduction for type abstractions — preserve
type information in a simple and efficient way.

o It provides greater generality. Our back end can deal
not only with languages based on Hindley-Milner types
(such as Haskell) but also languages based on the more
general Girard-Reynolds types (such as Ponder).

The use of explicit polymorphism in our target language is
one of the most innovative aspects of this work. Further,
this technique is completely independent of type classes — it
applies just as well to any language based on Hindley-Milner

types.

1.3 Structure of the paper

This paper does not assume prior knowledge of type classes.
However, the introduction given here is necessarily cursory;
for further motivating examples, see the original paper by
Wadler and Blott [WB89]. For a comparison of the Hindley-
Milner and Girard-Reynolds systems, see the excellent sum-
mary by Reynolds [Rey85]. For a practicuam on Hindley-
Milner type inference, see the tutorials by Cardelli [Car87]
or Hancock [Han87].

The remainder of this paper is organised as follows. Sec-
tion 2 introduces type classes and our translation method.
Section 3 describes the various notations used in present-
ing the inferences rules. The syntax of types, the source
language, and the target language is given, and the various
forms of environment used are discussed. Section 4 presents
the inference rules. Rules are given for types, expressions,
dictionaries, class declarations, instance declarations, and
programs. Finally, Section 5 describes how these rules can
be used directly in a monad-based implementation.



2 Type Classes

This section introduces type classes and defines the required
terminology. Some simple examples based on equality and
comparison operations are introduced. Some overloaded
function definitions are given and we show how they trans-
late. The examples used here will appear as running exam-
ples through the rest of the paper.

2.1 Classes and instances

A class declaration provides the names and type signatures
of the class operations:

class

(::

Eq a where
:: a —> a —> Bool

This declares that type a belongs to the class Eq if there
is an operation (==) of type a -> a -> Bool. That is, a
belongs to Eq if equality is defined for it.

An instance declaration provides a method that implements
each class operation at a given type:

instance Eq Int where
(==) = primEqInt

instance Eq Char where
(==) = primEqChar

This declares that type Int belongs to class Eq, and that
the implementation of equality on integers is given by
primEqInt, which must have type Int -> Int -> Bool.
Similarly for characters.

We can now write 2+2 == 4, which returns True; or
’a’ == ’b’, which returns False. As usual, x == y abbre-
viates (==) x y. In our examples, we assume all numerals
have type Int.

Functions that use equality may themselves be overloaded:

member = \ x ys -> not (null ys) &&
(x == head ys || member x (tail ys))
This wuses Haskell notation for lambda expressions:

\ x ys -> e stands for Ax. Ays. e. In practice we would
use pattern matching rather than null, head, and tail,
but here we avoid pattern matching, since we give typing
rules for expressions only. Extending to pattern matching
1s easy, but adds unnecessary complication.

The type system infers the most general possible signature
for member:

member :: (Eq a) => a -> [a] -> Bool

The phrase (Eq a) is called a context of the type — it limits
the types that a can range over to those belonging to class
Eq. As usual, [a] denotes the type of lists with elements of
type a. We can now inquire whether (member 1 [2,3]) or
(member ’a’ [’c’,’a’,’t’]), but not whether (member
sin [cos,tan]), since there is no instance of equality over
functions. A similar effect is achieved in Standard ML by
using equality type variables; type classes can be viewed as
generalising this behaviour.

Instance declarations may themselves contain overloaded
operations, if they are provided with a suitable context:

instance where

(::

(Eq a) => Eq [al
=\ xs ys —>
(null xs && null ys) ||
( not (null xs) && not (null ys) &&
head xs == head ys &&
tail xs == tail ys)

This declares that for every type a belonging to class Eq,
the type [a] also belongs to class Eq, and gives an appro-
priate definition for equality over lists. Note that head xs
== head ys uses equality at type a, while tail xs == tail
ys recursively uses equality at type [al. We can now ask
whether [’c?,’a’,’t’] == [’d’,’0’,°g’].

Every entry in a context pairs a class name with a type
variable. Pairing a class name with a type is not allowed.
For example, consider the definition:

palindrome xs = (xs == reverse xs)

The inferred signature is:

palindrome :: (Eq a) => [a] -> Bool

Note that the context is (Eq a), not (Eq [al).

2.2 Superclasses

A class declaration may include a context that specifies one
or more superclasses:

class (Eq a) => Ord a where
(<) : a ->a -> Bool
(=) :: a -> a —> Bool

This declares that type a belongs to the class Ord if there
are operations (<) and (<=) of the appropriate type, and if
a belongs to class Eq. Thus, if (<) is defined on some type,
then (==) must be defined on that type as well. We say
that Eq is a superclass of Ord.



The superclass hierarchy must form a directed acyclic graph.
An instance declaration is valid for a class only if there are
also instance declarations for all its superclasses. For exam-
ple

instance 0Ord Int where
(<) = primLtInt
(<=) = primLelnt

is valid, since Eq Int is already a declared instance.

Superclasses allow simpler signatures to be inferred. Con-
sider the following definition, which uses both (==) and (<):

search = \ x ys —>
not (null ys) &&
( x == head ys || ( x < head ys &&
search x (tail ys))

The inferred signature is:

search :: (0rd a) => a —> [a] -> Bool

Without superclasses, the inferred signature would have had
the context (Eq a, Ord a).

2.3 Translation

The inference rules specify a translation of source programs
into target programs where the overloading is made explicit.

Each instance declaration generates an appropriate corre-
sponding dictionary declaration. The dictionary for a class
contains dictionaries for all the superclasses, and methods
for all the operators. Corresponding to the Eq Int and Ord
Int instances, we have the dictionaries:

dictEqInt = (primEqInt)
dictOrdInt = (dictEqlInt, primLtInt, primLelnt)
Here {e1,...,e,) builds a dictionary. The dictionary for Ord

contains a dictionary for its superclass Eq and methods for

(<) and (x=).

For each operation in a class, there 1s a selector to extract
the appropriate method from the corresponding dictionary.
For each superclass, there is also a selector to extract the
superclass dictionary from the subclass dictionary. Corre-
sponding to the Eq and Ord classes, we have the selectors:

(== =\ (0,=2) -> ==

getEqFromOrd = \ ((dictEq), (<,<=)) ->
dictEq

(<) = \ ((dictEq), (<,<=)) -> <

(x=) = \ ((dictEq), (<,<=)) -> <=

Each overloaded function has extra parameters correspond-
ing to the required dictionaries. Here is the translation of
search:

search = \ d0rd x ys ->
not (null ys) &&
( (==) (getEqFrom0Ord dOrd) x (head ys) ||
( (<) dOrd x (head ys) &%
search dOrd x (tail ys)))

Each call of an overloaded function supplies the appropriate
parameters. Thus the term (search 1 [2,3]) translates
to (search dictOrdInt 1 [2,3]).

If an instance declaration has a context, then its translation
has parameters corresponding to the required dictionaries.
Here is the translation for the instance (Eq a) => Eq [al:

dictEqlist =
(\ xs ys ->
( null xs && null ys ) ||
( not (null xs) && not (null ys) &&
(==) dEq (head xs) (head ys) &&
(==) (dictEqlList dEq) (tail xs) (tail ys)))

\ dEq ->

When given a dictionary for Eq a this yields a dictionary for
Eq [al. To get a dictionary for equality on list of integers,
one writes dictEqList dictEqInt.

The actual target language used differs from the above in
that it contains extra constructs for explicit polymorphism.
See Section 3.2 for examples.

3 Notation

This section introduces the syntax of types, the source lan-
guage, the target language, and the various environments
that appear in the type inference rules.

3.1 Type syntax

Figure 1 gives the syntax of types. Types come in three
flavours: simple, overloaded, and polymorphic.

Recall from the previous section the type signature for
search,
(0rd a) => a —> [a] —> Bool,

which we now write in the form
Ve .(Ord o) = o — List o — Bool.

This is a polymorphic type of the form ¢ = Va.0 = 7 built
from a context § = (Ord «a) and a simple type 7 = o —
List o — Bool. Here Ord is a class name, List is a type



Type variable a

Type contructor

Class name K

Simple type T = «
| x7 ... 7% (k >0,k = arity(x))
| =

Overloaded type p — (K1 T1,...,hkm Tm) => 7 (m>0)

Polymorphic type ¢ — Vai...qp.0 =7 ({>0)

Context 0 —= (K1 a1,...,Km Qm) (m > 0)

Record Type Y= (v T, U T (n>0)

Figure 1: Syntax of types

constructor of arity 1, and Bool is a type constructor of
arity 0.

The record type, 7, maps class operation names to their
types, and appears in the source syntax for classes.

There is one subtlety. In an overloaded type p, entries be-
tween angle brackets may have the form « 7, whereas in a
polymorphic type o or a context @ entries are restricted to
the form & «. The extra generality of overloaded types is
required during the inference process.

3.2 Source and target syntax

Figure 2 gives the syntax of the source language. A pro-
gram consists of a sequence of class and instance decla-
rations, followed by an expression. The Haskell language
also includes features such as type declarations and pattern
matching, which have been omitted here for simplicity. The
examples from the previous section fit the source syntax
precisely.

Figure 3 gives the syntax of the target language. We write
the nonterminals of translated programs in boldface: the
translated form of var is var and of exp is exp. To in-
dicate that some target language variables and expressions
represent dictionaries, we also use dvar and dexp.

The target language uses explicit polymorphism. It gives
the type of bound variables in function abstractions, and
it includes constructs to build and select from dictionaries,
and to perform type abstraction and application. A pro-
gram consists of a set of bindings, which may be mutually
recursive, followed by an expression.

Notice that no class types appear in the translation. Given
an environment F as defined below, context and record
types are converted into monotypes by the function tran,

defined as:

tran B (0) = (tran E (k1 a1),...,tran E (K, ap))
where 0 = (k1 a1,..., Ky o)
tran E (k o) = (tran E (0),tran E (v))
where (CE of E)x =
class § = Kk « where~y
tran B (v) = (m1,..., ™)
where v = (vy:7,...,05:Ty)

This allows us to remove class types from the translation
entirely.

As an example, here is the translation of search from Sec-
tion 2.3, amended to make all polymorphism explicit:

search =
Aa. A d0rd:tran Fy (Ord o). Ax:a. Ays:[a].
not (null «a ys) &&
( (==) a (getOrdFromEq a d0rd) x
(head o ys) ||
( () a dOrd x (head « ys) &&
search o d0rd x (tail a ys)))

3.3 Environments

The inference rules use a number of different environments,
which are summarised in Figure 4.

The environment contains sufficient information to verify
that all type variables, type constructors, class names, and
individual variables appearing in a type or expression are
valid. Environments come in two flavours, map environ-
ments and compound environments.

A map environment associates names with information. We
write ENV name = info to indicate that environment ENV




program — classdecls ; instdecls ; exp

classdecls classdecly; . . .;classdecly,

instdecly; . . .;instdecl,

N

instdecls

class § = k «
where

classdecl —

instdecl — instance ! = K (x a1...qp)

where binds

binds — (vary =expy ,..., var, = expy)
exp — wvar
|  Awar . exp
|  eaxp exp’
|  let var = eaxp in exp

Programs

Class declaration (n > 0)
Instance declaration (n > 0)

Class declaration

Instance declaration (k& > 0)

(n>0)

Variable

Function abstraction
Function application
Local definition

Figure 2: Syntax of source programs

maps name name to information info. If the information
is not of interest, we just write ENV name to indicate that
name is in the domain of ENV. The type of a map environ-
ment is written in the symbolic form {name : info}.

We have the following map environments.

e The type variable environment AFE contains each type
variable name a that may appear in a valid type. This
is the one example of a degenerate map, where there is
no information associated with a name. We write AE «
to indicate that a is in AE.

e The type constructor environment 7'E maps a type con-
structor y to its arity k.

e The type class environment C'E maps a class name &
to a class declaration, which contains all of the required
type information.

e The instance environment [/ maps a dictionary vari-
able dvar to its corresponding type. The type indicates
that dvar is a polymorphic function that expects one
dictionary for each entry in &, and returns a dictionary
for & 7.

e The local instance environment LIF is similar, except
the associated type is more restricted. Here the type
indicates that dvar is a dictionary for k 7.

e The variable environment IF maps a variable var to
its associated polymorphic type o.

e The local variable environment LI1FE is similar, except
the associated type is a simple type 7.

Environments corresponding to the examples in Section 2
are shown in Figure 5.

A compound environment consists of a tuple of other envi-
ronments. We have the following compound environments.

e Most judgements use an environment E consisting of
a type variable, a type constructor, a type class, an
instance, a local instance, and a variable environment.

e Top level rules such as those for class and instance dec-
larations use an initial version PFE of the environment
E. This contains an empty AE and LIF.

e The judgements for class declarations produces a dec-
laration environment DFE consisting of a type class, an
instance, and a variable environment.

Again, these are summarised in Figure 4.

We write VE of E to extract the type environment VE
from the compound environment F, and similarly for other
components of compound environments.

—
The operations @ and @ combine environments. The former
checks that the domains of its arguments are distinct, while
the latter “shadows” its left argument with its right:

(ENVL @ ENV3) var =
ENVy var if var € dom(ENV,) and var & dom(ENV3)
ENVs var if var € dom(ENV3) and var € dom(ENVy),

(ENVy & ENVa) var =
ENVy var  if var € dom(ENV7) and var ¢ dom(ENV2)
ENVsy var if var € dom(ENV3).

For brevity, we write Iy & 5 instead of a tuple of the sums
of the components of F; and FE5; and we write £ @ VE
to combine V E into the appropriate component of E; and




program — letrec bindset in exp Program
bindset — var; = exp;;...;var, = exp, Bindingset (n>0)
exp — var Variable
| A pat. exp Function abstraction
| exp exp’ Function application
| let var = exp’ in exp Local definition
| {expy,...,exp,) Dictionary formation (n > 0)
| Aay...qn . exp Type abstraction (n > 1)
| exprm...m Type application (n > 1)
pat — wvar:rT
| (paty,...,pat,) (n>0)
Figure 3: Syntax of target programs

Environment Notation Type
Type variable environment AE {a}
Type constructor environment 7T'F {x:k}
Type class environment CE {k :class ! = Kk a where 7}
Instance environment I1E {dvar :Vo;...ap. 0 =k 7}
Local instance environment LIE {dvar : k 7}
Variable environment VE {var : o}
Environment E (AE,TE,CE,IE,LIE,VE)
Top level environment PE {}, TE,CE,IE{},VE)
Declaration environment DE (CE,IE,VE)

Figure 4: Environments

similarly for other environments. Sometimes we specify the
contents of an environment explicitly and write & gy

There are three implicit side conditions associated with en-
vironments:

1. Variables may not be declared twice in the same scope.
If F1 @& F5 appears in a rule, then the side condition
dom(E1) Ndom(FE2) = () is implied.

2. Every variable must appear in the environment. If
E var appears in a rule, then the side condition var €
dom(F) is implied.

3. At most one instance can be declared for a given class
and given type constructor. If /E; @ [ E» appears in a
rule, then the side condition

Y k1 (X1 Ozl...am) e IE;.
VY ko (X2 Oél...Ozn) e IFE,.
K1 # K2 V X1 # X2

1s implied.

In some rules, types in the source syntax constrain the en-
vironments generated from them. This is stated explicitly

by the determines relation, defined as:

T determines AF <— ftu(r) = AE

0 determines LIE <— 0 = ran(LIE)

4 Rules

This section gives the inference rules for the various con-
structs in the source language. We consider in turn types,
expressions, dictionaries, class declarations, instance decla-
rations, and full programs.

4.1 Types

The rules for types are shown in Figure 6. The three judge-
ment forms defined are summarised in the upper left corner.




TEy; = { Int: 0,

Bool:0,
List:1 }

CEy = {

EO = ({ }aTEOa CEOa IEOa { }a VEO)

Eq: {class Eq a where ((==):a — o — Bool) },
0rd: {class (Eq a) = 0Ord «
where ((<):a = a = Bool, (<=): &« = o« — Bool) } }

IEy, = { getEqFrom0rd: Vea. (Ord o) = Eq a,
dictEqInt : Eq Int,
dictEqList : Vea. (Eq a) = Eq (List a),
dictOrdInt : Ord Int }

VEy, = { (==):Va. (Eq a) = a = a = Bool,

(<): Ya. (Ord a) = o« > a — Bool,
(<=):Va. (Ord a) = a« - o — Bool }

Figure 5: Initial environments

A judgement of the form
E yI—Pe T

holds if in environment F the simple type 7 is valid. In
particular, all type variables in 7 must appear in AFE of F
(as checked by rule TYPE-VAR), and all type constructors
in 7 must appear in TF of E with the appropriate arity (as
checked by rule TYPE-CON). The other judgements act
similarly for overloaded types and polymorphic types.

Here are some steps involved in validating the type
Vea. (Ord o) = o = o — Bool. Let AE = {a} and let Ey
be as in Figure 5. Then the following are valid judgements:

(1) Eod AE tyI—Pe a — a — Bool,
(2) By AE over'-_type

(3) EO poly';type
Judgement (1) yields (2) via TYPE-PRED, and judgement
(2) yields (3) via TYPE-GEN.

(Ord o) = a - o — Bool,
Va. (Ord a) = o — o — Bool.

The type inference rules are designed to ensure that all types
that arise are valid, given that all types in the initial envi-
ronment are valid. In particular, if all types appearing in
the CE, IE, LIE, and V E components of E are valid with
respect to E, this property will be preserved throughout the
application of the rules.

4.2 Expressions

The rules for expressions are shown in Figure 7. A judge-
ment of the form

exp

EF erp: 17 ~ exp

holds if in environment E the expression exp has simple type
7 and yields the translation exp. The other two judgements
act similarly for overloaded and polymorphic types.

The rules are very similar to those for the Hindley-Milner
system. The rule TAUT handles variables, the rule LET
handle let binding, the rules ABS and COMB introduce
and eliminate function types, and the rules GEN and SPEC
introduce and eliminate type quantifiers. The new rules
PRED and REL introduce and eliminate contexts. Just as
the rule GEN shrinks the type variable environment AFE the
rule PRED shrinks the local instance environment LIE.

Here are some steps involved in typing the phrase
\xy —>x <y. Let £y be as in Figure 5, and let AE =
{a}, LIE = {d0rd : Ord o}, and VE = {x : o,y : a}.



E

exp

Fexp:7 ~ exp

E

over-exp

exp : p ~» exp

E

poly-exp

exp o ~» exp

(VE of E) var = o

TAUT _
F  wvar:oc ~ var
poly-exp
F wvar :Voi...ap.0 =17 ~ var
SPEC Over_expE F o (1<i<k)
E + war:(0=7)[n/a,...,m/ag] ~ var m ...
ETF var: 6 = T ~ exp
dicts
REL Ee: f ~ dexps
E F var: 1t ~ exp dexps
Ed A Wi :
ABS Gve {var : 7'} F exp: 7T ~ exp

eXp

E F dvar. exp: 7 — 1 ~ Avar: 7. exp

exp
EFexp:7 =1 ~ exp
exp

EF exp 7 ~ exp

COMB ___
E F (exp exp’) : 7 ~ (exp exp’)
dicts
EFE®LIE F 6 ~ dpat 6 determines LIF
PRED E@LIEF apT T o
E + exp:0=71 ~ Adpat:tran F (0) . exp
GEN E®ag{ar,...,ax} F exp:0 =71 ~ exp

poly-exp

E F exp:Vai...ap.0=>7 ~ Aaj...a; . exp

poly-exp
E b+ exp:o ~ exp’

e exp
LET E @yg{var:c} F exp: 1 ~ exp

eXp

E F let var = exp’ inexp: T ~ let var = exp’ in exp

Figure 7: Rules for expressions




Judgement (1) yields (2) via ABS, judgement (2) yields (3)
type via PRED, and judgment (3) yields (4) via GEN.
EFr

As is usual with such rules, one is required to use prescience

over-type to guess the right initial environments. For the SPEC and
E F O0=71 GEN rules, the method of transforming prescience into an
algorithm is well known: one generates equations relating

poly-type types during the inference process, then solves these equa-

Val? e Qi 0 =1 tions via unification. For the PRED and REL rules, a sim-
ilar method of generating equations can be derived.

TyPE-VAR A0S B) o
FF a
4.3 Dictionaries
(TE of E) x = k
E tT—pe Ti (1<i<k) The inference rules for dictionaries are shown in Figure 8.
TYPE-CON Toe A judgement of the form
EF xyrm.. .7
dict
EF k71~ dexp
(CE of E) k4 (1<i<m) e ) . .
(AE of E a; (1<i<m) holds if in environment F there is an instance of class &
type ' - - at type 7 given by the dictionary dexp. The other two
TYPE-PRED EF T judgements act similarly for overloaded and polymorphic
z over'_ype <K:1 a1 K am> = r nstances.

The two DICT-TAUT rules find instances in the IE and
LIE component of the environment. The DICT-SPEC
rule instantiates a polymorphic dictionary, by applying it

overtype to a type. Similarly, the DICT-REL rule instantiates an
Ea Ay, ..., F =T o ’ . - .
TYPE-GEN Aily{_tyie 3 overloaded dictionary, by applying it to other dictionaries,
Vai...ap. 0 => 1 themselves derived by recursive application of the dictionary
judgement.

The rule that translates an entire context into a tuple of the

Figure 6: Rules for types . o . .
corresponding dictionaries has the judgement form

Then the following are valid judgements: it

(1) Ey®AE®LIE®VE F x < y:Bool B 6~ dexps

s

(<) « d0rd x y

exp Here is how to derive a dictionary for the instance of class
(2) Eo@AESLIEE \xy —>x<y Eq at type Int. Let Ey be as in Figure 5. Then the following

: judgements hold:
a — o = Bool

~ poly-dict

Ax:a. Ay:a. (<) adord xy (1) Ey F  Vea.(Eqa)= Eq (List a) ~ dictEqList
over-exp over-dict
(3) EodAE F \Nxy->zx<y (2) Ey F (EqInt) = Eq (List Int) ~ dictEqList Int
. dict
) 3) Eo F EqInt dictEqInt
(0rd o) = o - a = Bool (3) 0 qint nedretrqin
s (4) FEy b Eq (List Int) ~ dictEqList Int dictEqInt

AdOrd : tranFy(Ord «).
Ax i Ay ta. () o dOrd x y Judgement (1) holds via DICT-TAUT-IE, judgement (2)
) B pety-ep \ry->x<y follows from (1) via D1CT—SPEC, judgement (3) holds via
DICT-TAUT-IE, and judgement (4) follows from (2) and

Ya. (0rd ) = a — a — Bool (3) via DICT-REL.

s

Aa. AOrd : tranEy(Ord a). Note that the dictionary rules correspond closely to the

Ax:a. Ay :a. (<) a dOrd x y TAUT, SPEC, and REL rules for expressions.
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dict

EFEFr71~ dexp

over-dict

EF F 0=xrx71~ dexp

poly-dict

Voj...apn. 0 = k7 ~ dexp

dicts

E F 0 ~ dexps

DICT-TAUT-LIE (LIE of F) dvar =k «

dict
F F xa ~ dvar

DICT-TAUT-IE (IE of F) dvar =Va; ...

an. 0=k (X a1...0p)

poly-dict
F Var...on. 0=k (X o1...ap) ~ dvar
poly-dict
DICT-SPEC _ tE F Vay...ap.0 2> k7 ~ dexp
E F (@=knn/o,...,m/ap] ~ dexpm...1
over-dict
= r 1 ~ dexp
dicts
DICT-REL __~ d,i f ~ dexps
E F k1 ~ dexp dexps
dict .
DICTS E F &k 77 ~ dexp; (1<i<n)

dicts

E + <K§1 Ty - -

Sy Kp Ty ~ (dexpy, ..

.,dexp,)

Figure 8: Rules for dictionaries

4.4 Class declarations

The rule for class declarations is given in Figure 9. Although
the rule looks formidable, its workings are straightforward.

A judgement of the form

classdecl

PE + classdecl : DE ~+ bindset

holds if in environment P E the class declaration classdecl is
valid, generating new environment DE and yielding trans-
lation bindset. In the compound environment DE =
(CE,IE,VE), the class environment C'E has one entry that
describes the class itself, the instance environment IF has
one entry for each superclass of the class (given the class
dictionary, it selects the appropriate superclass dictionary)
and the value environment V E has one entry for each op-
erator of the class (given the class dictionary, it selects the
appropriate method).
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For example, the class declaration for Ord given in
Section 2.2 yields the 0rd component of CFEjy, the
getEqFromOrd component of I'Ey, and the (<) and (<=)
components of V Ey, as found in Figure 5. The binding set
generated by the rule is as shown in Section 2.3.

4.5 Instance declarations

The rule for instance declarations is given in Figure 11.
Again the rule looks formidable, and again its workings are
straightforward.

A judgement of the form

instdecl

PE +  instdecl : IE ~ bindset

holds if in environment P E the instance declaration instdecl
is valid, generating new environment / F and yielding trans-




classdecl

E F classdecl : DE ~» bindset

type

PE®AE + « « determines AF
dicts
PEDAE S LIE + 6 ~ dpat 6 determines LIF

sigs
CLASS PE® AE F v ~ mpat

classdecl

PE F class # = Kk « where
({x : class § = &k a where v},
{dvar: A a. (ko) = &' 7 | dvar : &’ 7' € LIE},
{var t:Aa. (ka) = 7 | var: 7 € 7})
a4
{dvar = A «a. A (dpat,mpat) : (tran PE (0),tran PE (v)) . dvar
| dvar € dom(LIE)} U
{var = A «. A (dpat,mpat) : (tran PE (0),tran PE (v)) . var
| var € dom(y)}

Figure 9: Rule for class declarations

sigs

E - sigs ~ sigs

SIGS EFr (1<i<m)

Sigs

E F (vary :m,...,0ar, : Tm) ~ (vary,...,vary)

Figure 10: Rule for class signatures

instdecl

E F instdecl : I[E ~s bindset

(CE of PE) & = class ¢/ = & « where '

type

PE®AE F 1 7 determines AFE
PEDAE D LIE dilits f ~ dpat f determines LIF
PE®AE @ LIE F 0'[r/a] ~ dexp

PE® AE @ LIE bilids binds : '[r/a] ~ binds

instdecl

PE + instance # = k 7T where binds

INST

{dvar =V dom(AFE). § = k 7}

dvar = A dom(AFE). A dpat : tran PE (). (dexp, binds)

Figure 11: Rule for instance declarations
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binds

E + binds : v ~ binds

exp
E F exp;exp;, ~ T

BINDS

(1<i<m)

binds

E (vary = expy, ..., vary = erpm)

(vary VAT & T )

s

STy ..

(var; = expy, ..., var, = exp,,)

Figure 12: Rule for instance bindings

lation bindset. The instance environment [FE contains a
single entry corresponding to the instance declaration, and
the bindset contains a single binding. If the header of the
instance declaration is # = & 7, then the corresponding
instance is a function that expects one dictionary for each
entry in #, and returns a dictionary for the instance.

The first line looks up the superclasses and record type of
the instance class. Line (2) sets AE to contain the type vari-
ables in 7. Line (3) sets LIFE to contain the types in 6, the
instance context, and builds the pattern for the dictionary
parameters. Line (4) checks that the superclasses are satis-
fied by the LIE and builds the dictionaries for those super-
classes. Finally, line (5) checks that the method definitions
have precisely the types of the class operations instantiated
by the instance type, and builds the method translations.

For example, the instance declarations for Eq Int, (Eq a)
=> Eq [al, and Ord Int yield the dictEqInt, dictEqList,
and dictOrdInt components of [Fy as found in Figure 5,
and the bindings generated by the rule are as shown in Sec-
tion 2.3.

4.6 Programs

Figure 13 gives the rules for declaration sequences and pro-
grams.

The order of the class declarations is significant, because
at the point of a class declaration all its superclasses must
already be declared. (This guarantees that the superclass
hierarchy forms a directed acyclic graph.) Further, all class
declarations must come before all instance declarations.

Conversely, the order of the instance declarations is irrele-
vant, because all instance declarations may be mutually re-
cursive. Mutual recursion of polymorphic functions doesn’t
cause the problems you might expect, because the instance
declaration explicitly provides the needed type information.

These differences are reflected in the different forms of the
CDECLS and IDECLS rules. That instance declarations
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are mutually recursive is indicated by line (2) of the PROG
rule, where the same environment [F appears on the left
and right of the instdecl rule.

In Haskell, the source text need not be so ordered. A pre-
processing phase performs a dependency analysis and places
the declarations in a suitable order.

5 Implementing the rules

Our major goal in writing the type rules was to provide a
basis for an implementation.

In writing the rules and the implementation, we had the pic-
ture in Figure 2 in our minds. Each syntactic non-terminal
in the grammar of the language (such as expressions, exp)

corresponds one-to-one with a judgement form (such as I— ).
The implementation was designed so that each judgement
form in turn corresponds one-to-one with a function (such
as tcExpr, the function which typechecks expressions).

The structure extends further. Each production in the gram-
mar corresponds one-to-one with a type rule, and that in
turn corresponds one-to-one with a case in the definition of
the appropriate function. For example, the production

exp —> exp_1 exp_2

corresponds to the rule COMB, and to a case in the definition
of tcExpr which begins

tcExpr (App el e2)

Lastly, the type of the function that corresponds to a judge-
ment form is systematically derived from the signature of

exp

that judgement form. For example, the signature of  is

exp

ElFexrp:7~ exp




classdecls

PE F classdecls : DE ~» bindset

classdecl

PE®DE, @& ... DE;_1 F classdecl; : DE; ~ bindset; (1 <i<n)

CDECLS classdecls
PE classdecly ; ... ; classdecl, : DE1 @ ... ® DE,
a4
bindset;; ... ;bindset,

instdecls

PE F instdecls : [E ~» bindset

instdecl

PE F  instdecl; : IE; ~ bindset; (1 <i<n)

IDECLS instdecls
PE instdecly ; ... ; instdecly, : (IE of PEY® IE1 @ ... & 1E,
a4
bindset;; ... ;bindset,

program

PE + program:(DE,T) ~ exp

classdecls

1) PE F classdecls : DE ~ bindsetc

instdecls

(
(2) PE®DE®IE + instdecls:IE ~ bindset;
(3) PE@DE®IE I—pexpzrf\»exp

PROG program
PE classdecls ; instdecls ; exp: (DE ® IE,T)
a4
letrec bindsets; bindset; in exp
Figure 13: Rules for declaration sequences and programs
and the type of tcExpr is dle them all using a monad, TcM, which is defined as
tcExpr :: Env -> Expr -> TcM (Expr, Type) type TcM a = Uniq -> Subst —>

Maybe (a, Uniq, Subst)

That is, tcExpr takes an environment and an expression
to be typechecked, and returns the translated expression,
along with its inferred type.

data Maybe a = Nothing | Just a

A tutorial on monads as they are used in the compiler ap-
Notice that the monad TcM appears in the result type of pears in the appendix.
tcExpr. One might have thought that tcExpr would have
type Env -> Expr -> (Expr, Type), a function from ex- Programming using monads has a number of benefits.
pressions to types, but quite a lot of “plumbing” is required  Firstly, the plumbing is implicit, which makes the program
behind the scenes. Firstly, if there is a type error in the pro- much easier to read and write.
gram, the type-inference process can fail when type-checking
fun or arg, or during the unification step. Secondly, there Secondly, because the plumbing is all encapsulated in one
must be a unique-name supply from which to manufacture place, it is very easy to modify. For example, well over a
a new type variable. Thirdly, there must be some way of year after the type checker was working we added an error
collecting and displaying error messages. Fourthly, the uni- recovery mechanism, so that a single type error would not
fication process works by incrementally augmenting a sub- cause the entire type-checker to halt. It is now possible
stitution mapping type variables to types. All of these would to recover from the error, and gather several accurate type
usually be handled in an imperative language by side effects; error messages in one run of the compiler. This was achieved
or by some sort of exception-handling mechanism. We han- in a single afternoon’s work, modifying very localised parts
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of the type checker.

5.1 The typechecker implementation

The only difficulty in translating rules into code is deciding
which components of the judgement signature should go into
the function as its arguments, and what should come out of
the function as its result. This is not an easy question,
because type rules are deliberately relational in style, and
therefore ambiguous about the direction of data flow. In
translating them into functions, these data flow directions
must be made explicit.

The major change needed to implement a functional version
of these rules requires computing the LIFE directly. This is
done in each of the expression rules, which combine LIEs
calculated for the leaves of the abstract syntax tree. The
dictionary rules are explicitly passed an LIFE, rather than
building it up relationally in the incoming environment.

5.1.1 Application

Let Expr be the data-type for abstract syntax, and
SimpleType, OverType and PolyType represent the types

7,8, 0. The types of exp, over_exp and dicts are

exp :: E -> Expr -> TcM (Expr, SimpleType, LIE)
over_exp :: E -> Expr -> TcM (Expr, OverType, LIE)
dicts :: E -> LIE -> TcM (Expr, Theta)

To start off with, we present the (slightly simplified) code
from the compiler for type-checking an application:

tcExpr (Ap fun arg)

= tcExpr fun ‘thenTcM‘ (\(fun’,fun_ty,lie_fun) ->
tcExpr arg ‘thenTcM‘ (\(arg’,arg_ty,lie_arg) —->
newTyVar  ‘thenTcM‘ (\ res_ty ->

unify fun_ty (arg_ty ‘arrow‘ res_ty)
‘thenTcM‘ (\ () ->

returnTcM (Ap fun’ arg’, res_ty,
plusLIE lie_fun lie_arg)
))))

At an informal level this code should be legible even by
readers with no experience of type inference. It can be read
like this: “To typecheck an application Ap fun arg, first
typecheck fun, inferring the type fun_ty, then typecheck
arg, inferring the type arg ty. Now invent a fresh type
variable res_ty, and unify fun_ty with arg_ty -> res_ty.
Finally, return res_ty as the type of the application.”
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5.1.2 REL and PRED

Next, we’ll show how the two new expression rules, REL and
PRED can be implemented using monads, and then sketch
the rest of the implementation.

Here is the implementation of the REL rule. A new LIE is
created from new variable names given by the monad state.

exp e (Var v)
= over_exp e (Var v) ‘thenTcM‘

(\ (expr, Arrow theta simple, _) ->
mkNewLIE theta
dicts e lie

‘thenTcM¢ (\ lie ->
‘thenTcM¢ (\ (dexprs, _) —>

returnTcM (mkDictApp expr dexprs, simple,
lie))))

The implementation of the PRED rule is more complex. No-
tice that the LIFE inferred for an expression may constrain
free type variables in the type environment; the correspond-
ing dictionaries should not appear in the outgoing LIFE. Thus
lie_expr must be split into two pieces by splitLIE.

over_exp e expr
= exp e expr ‘thenTcM‘ (\ (expr’, simple,
lie_expr ) >
(let (lie_theta, lie_enclosing) =
splitLIE simple e lie_expr
in

dicts e lie_theta ‘thenTcM‘ (\(dpat,theta) —>

returnTcM (mkLambda dpat (tran e theta) expr’,
Arrow theta simple,
lie_enclosing))))

The rest of the expression rules and the dictionary rules pro-
vide a straightforward implementation. The circularity in
the top-level rules, which requires that instance definitions
be based on top-level bindings and which in turn depend
on instance definitions, can be implemented by using two
passes.

6 Conclusions

This paper makes two contributions. First, it presents
a minimal, readable set of inference rules to handle type
classes in Haskell, derived from the full static semantics
[PWO91]. An important feature of this style of presentation
is that it scales up well to a description of the entire Haskell
language, as we have found in practice.

Second, the paper has shown how these rules can be directly
implemented using monads. This style has been applied



to the full static semantics in order to construct the type
checker used in the Glasgow Haskell compiler, as well as
virtually all other passes in the compiler. It has undoubtedly
saved us from initially making countless bookkeeping errors,
and continues to pay off as we maintain our code and train
students to work with it.

Together, these form a useful bridge between more tradi-
tional theoretical papers on type theory and papers describ-
ing particular compiler implementations.
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A A tutorial on compiler monads

A monad 1s an abstract data type with a set of operations,
typically ‘return’, and ‘then’ [Wad92]. We'll refer to ‘func-
tions which use monads’ as monad functions, as distinct
from monad operations. If £ has type a -> b, then the cor-
responding monad function £’ has type a => M b. These
functions are given access to the monad state only by monad
operations.

Here is a typical compiler monad which passes around
unique variable names. The supply must be passed in and
out of each monad operation. The name supply is seen only
by the monad operation getName which removes one name
and passes the depleted supply back to the monad.

[Int]
NameSupply —>
(NameSupply, result)

type NameSupply
type M result

getName :: M Name
getName (n:name_supply) = (name_supply, n)

The operations ‘returnM’ and ‘thenM’ do the plumbing; the
simplest of these is ‘returnM’.

-> M result
returnM result name_supply = (name_supply, result)

returnM :: result

The most complex monad operation is ‘thenM’. In general,
its type shows that it takes a computation of type a, and a
function (continuation) from a value of type a to a compu-
tation of type b, yielding a computation of type b. It works
as follows:

1. perform the first computation to yield a value of type

a;

2. apply the continuation to this to get a value of type b;

3. this value 1s combined with the effects of the two com-
putations in an appropriate way, and this combination
1s a computation of type b.

For example, the implementation of ‘thenM’ for this partic-
ular monad is:

thenM :: Ma -> (a->Mb) >Mb
thenM e k name_supply
= case (e name_supply) of
(next_name_supply, result) ->
k result next_name_supply

The expression e receives the name supply, which it can
access and update, returning the new supply. Its value is
passed to the continuation, which gets the new name sup-
ply. Since nothing needs to be done to combine the value of
the continuation with the monad state, the result of ‘thenM*
1s just the application of the continuation. Another monad
might look at the state returned by this application and
combine it with the first state which was returned by eval-
uating e.

One particularly useful feature of monads is that they can
also propagate errors. To do this, we alter M as follows:

type ErrorType =
data MaybeErr res err =

String
Succeeded res
Failed err

type M result = NameSupply —>
MaybeErr (NameSupply, result)
ErrorType

The corresponding monad operations are:

returnlM :: result -> M result
returnlM result name_supply

= Succeeded (name_supply, result)
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thenM :: Ma->(a->Mb) ->Mb
thenM e k name_supply
= case (e name_supply) of
Succeeded (next_name_supply, result)
-> k result next_name_supply
Failed err -> Failed err

Notice that if evaluation of e fails, then the continuation is
never applied.

We add a new monad operation to introduce failures:

failM :: ErrorType -> M a
failM err = Failed err
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