
Type classes in HaskellCordelia Hall, Kevin Hammond, Simon Peyton Jones and Philip WadlerUniversity of Glasgow�January 20, 1994AbstractThis paper de�nes a set of type inference rules for resolvingoverloading introduced by type classes. Programs includingtype classes are transformed into ones which may be typedby the Hindley-Milner inference rules. In contrast to otherwork on type classes, the rules presented here relate directlyto user programs. An innovative aspect of this work is theuse of second-order lambda calculus to record type informa-tion in the program.1 IntroductionA funny thing happened on the way to Haskell [HPW92].The goal of the Haskell committee was to design a standardlazy functional language, applying existing, well-understoodmethods. To the committee's surprise, it emerged that therewas no standard way to provide overloaded operations suchas equality (==), arithmetic (+), and conversion to a string(show).Languages such as Miranda1[Tur85] and Standard ML[MTH90, MT91] o�er di�ering solutions to these problems.The solutions di�er not only between languages, but withina language. Miranda uses one technique for equality (it isde�ned on all types { including abstract types on which itshould be unde�ned!), another for arithmetic (there is onlyone numeric type), and a third for string conversion. Stan-dard ML uses the same technique for arithmetic and stringconversion (overloading must be resolved at the point of ap-pearance), but a di�erent one for equality (type variablesthat range only over equality types).The committee adopted a completely new technique, basedon a proposal by Wadler, which extends the familiarHindley-Milner system [Mil78] with type classes. Typeclasses provide a uniform solution to overloading, includ-ing providing operations for equality, arithmetic, and stringconversion. They generalise the idea of equality types fromStandard ML, and subsume the approach to string conver-sion used in Miranda. This system was originally described�This work is supported by the SERC AQUA Project. Au-thors' address: Computing Science Dept, Glasgow University, 17Lilybank Gdns., Glasgow, Scotland. Email: fcvh, kh, simonpj,wadlerg@dcs.glasgow.ac.uk1Miranda is a trademark of Research Software Limited.

by Wadler and Blott [WB89, Blo91], and a similar proposalwas made independently by Kaes [Kae88].The type system of Haskell is certainly its most innovativefeature, and has provoked much discussion. There has beenclosely related work by Rouaix [Rou90] and Comack andWright [CW90], and work directly inspired by type classesincludes Nipkow and Snelting [NS91], Volpano and Smith[VS91], Jones [Jon92a, Jon93], Nipkow and Prehofer [NP93],Odersky and L�aufer [OdL�a91], L�aufer [L�au92, L�au93], andChen, Hudak and Odersky [CHO92].The paper presents a source language (lambda calculus withimplicit typing and with overloading) and a target language(polymorphic lambda calculus with explicit typing and with-out overloading). The semantics of the former is providedby translation into the latter, which has a well-known se-mantics [Hue 90]. Normally, one expects a theorem statingthat the translation is sound, in that the translation pre-serves the meaning of programs. That is not possible here,as the translation de�nes the meaning of programs. It is agrave shortcoming of the system presented here is that thereis no direct way of assigning meaning to a program, and itmust be done indirectly via translation; but there appears tobe no alternative. (Note, however, that [Kae88] does give adirect semantics for a slightly simpler form of overloading.)The original type inference rules given in [WB89] were de-liberately rather sparse, and were not intended to reectthe Haskell language precisely. As a result, there has beensome confusion as to precisely how type classes in Haskellare de�ned.1.1 Contributions of this paperThis paper spells out the precise de�nition of type classes inHaskell. These rules arose from a practical impetus: ourattempts to build a compiler for Haskell. The rules werewritten to provide a precise speci�cation of what type classeswere, but we found that they also provided a blueprint forhow to implement them.This paper presents a simpli�ed subset of the rules we de-rived. The full static semantics of Haskell[PW91] containsover 30 judgement forms and over 100 rules. The readerwill be pleased to know that this paper simpli�es the rulesconsiderably, while maintaining their essence in so far as1

type classes are concerned. The full rules are more complexbecause they deal with many additional syntactic featuressuch as type declarations, pattern matching, and list com-prehensions.This paper shows how the static analysis phase of ourHaskell compiler was derived by adopting directly the rulesin the static semantics. This was generally a very straight-forward task. In our earlier prototype compiler, and also inthe prototype compilers constructed at Yale and Chalmers,subtleties with types caused major problems. Writing downthe rules has enabled us to discover bugs in the various pro-totypes, and to ensure that similar errors cannot arise inour new compiler.We have been inspired in our work by the formal seman-tics of Standard ML prepared by Milner, Tofte, and Harper[MTH90, MT91]. We have deliberately adopted many of thesame techniques they use for mastering complexity.This approach unites theory and practice. The indus-trial grade rules given here provide a useful complementto the more theoretical approaches of Wadler and Blott[WB89, Blo91], Nipkow and Snelting [NS91], Nipkow andPrehofer [NP93], and Jones [Jon92a, Jon93]. A numberof simplifying assumptions made in those papers are notmade here. Unlike [WB89], it is not assumed that eachclass has exactly one operation. Unlike [NS91], it is notassumed that the intersection of every pair of classes mustbe separately declared. Unlike [Jon92a], we deal directlywith instance and class declarations. Each of those papersemphasises one aspect or another of the theory, while thispaper stresses what we learned from practice. At the sametime, these rules and the monad-based[Wad92] implementa-tion they support provide a clean, `high-level' speci�cationfor the implementation of a typechecker, unlike more imple-mentation oriented papers [HaBl89, Aug93, Jon92b].A further contribution of this work is the use of explicitpolymorphism in the target language, as described in thenext section.1.2 A target language with explicit poly-morphismAs in [WB89, NS91, Jon92a], the rules given here specifya translation from a source language with type classes to atarget language without them. The translation implementstype classes by introducing extra parameters to overloadedfunctions, which are instantiated at the calling point withdictionaries that de�ne the overloaded operations.The target language used here di�ers in that all polymor-phism has been made explicit. In [WB89, NS91, Jon92a],the target language resembles the implicitly typed polymor-phic lambda calculus of Hindley and Milner [Hin69, Mil78,DM82]. Here, the target language resembles the explicitlytyped second-order polymorphic lambda calculus of Girard

and Reynolds [Gir72, Rey74]. It has constructs for type ab-straction and application, and each bound variable is labeledwith its type.The reason for using this as our target language is that itmakes it easy to extract a type from any subterm. Thisgreatly eases later stages of compilation, where certain op-timisations depend on knowing a subterm's type. An alter-native might be to annotate each subterm with its type, butour method has three advantages.� It uses less space. Types are stored in type applicationsand with each bound variable, rather than at every sub-term.� It eases subsequent transformation. A standard andproductive technique for compiling functional lan-guages is to apply various transformations at interme-diate phases [Pey87]. With annotations, each transfor-mation must carefully preserve annotations on all sub-terms and add new annotations where required. Withpolymorphic lambda calculus, the usual transformationrules { e.g., �-reduction for type abstractions { preservetype information in a simple and e�cient way.� It provides greater generality. Our back end can dealnot only with languages based on Hindley-Milner types(such as Haskell) but also languages based on the moregeneral Girard-Reynolds types (such as Ponder).The use of explicit polymorphism in our target language isone of the most innovative aspects of this work. Further,this technique is completely independent of type classes { itapplies just as well to any language based on Hindley-Milnertypes.1.3 Structure of the paperThis paper does not assume prior knowledge of type classes.However, the introduction given here is necessarily cursory;for further motivating examples, see the original paper byWadler and Blott [WB89]. For a comparison of the Hindley-Milner and Girard-Reynolds systems, see the excellent sum-mary by Reynolds [Rey85]. For a practicum on Hindley-Milner type inference, see the tutorials by Cardelli [Car87]or Hancock [Han87].The remainder of this paper is organised as follows. Sec-tion 2 introduces type classes and our translation method.Section 3 describes the various notations used in present-ing the inferences rules. The syntax of types, the sourcelanguage, and the target language is given, and the variousforms of environment used are discussed. Section 4 presentsthe inference rules. Rules are given for types, expressions,dictionaries, class declarations, instance declarations, andprograms. Finally, Section 5 describes how these rules canbe used directly in a monad-based implementation.2

2 Type ClassesThis section introduces type classes and de�nes the requiredterminology. Some simple examples based on equality andcomparison operations are introduced. Some overloadedfunction de�nitions are given and we show how they trans-late. The examples used here will appear as running exam-ples through the rest of the paper.2.1 Classes and instancesA class declaration provides the names and type signaturesof the class operations:class Eq a where(==) :: a -> a -> BoolThis declares that type a belongs to the class Eq if thereis an operation (==) of type a -> a -> Bool. That is, abelongs to Eq if equality is de�ned for it.An instance declaration provides a method that implementseach class operation at a given type:instance Eq Int where(==) = primEqIntinstance Eq Char where(==) = primEqCharThis declares that type Int belongs to class Eq, and thatthe implementation of equality on integers is given byprimEqInt, which must have type Int -> Int -> Bool.Similarly for characters.We can now write 2+2 == 4, which returns True; or'a' == 'b', which returns False. As usual, x == y abbre-viates (==) x y. In our examples, we assume all numeralshave type Int.Functions that use equality may themselves be overloaded:member = \ x ys -> not (null ys) &&(x == head ys || member x (tail ys))This uses Haskell notation for lambda expressions:\ x ys -> e stands for �x: �ys. e. In practice we woulduse pattern matching rather than null, head, and tail,but here we avoid pattern matching, since we give typingrules for expressions only. Extending to pattern matchingis easy, but adds unnecessary complication.The type system infers the most general possible signaturefor member:member :: (Eq a) => a -> [a] -> Bool

The phrase (Eq a) is called a context of the type { it limitsthe types that a can range over to those belonging to classEq. As usual, [a] denotes the type of lists with elements oftype a. We can now inquire whether (member 1 [2,3]) or(member 'a' ['c','a','t']), but not whether (membersin [cos,tan]), since there is no instance of equality overfunctions. A similar e�ect is achieved in Standard ML byusing equality type variables; type classes can be viewed asgeneralising this behaviour.Instance declarations may themselves contain overloadedoperations, if they are provided with a suitable context:instance (Eq a) => Eq [a] where(==) = \ xs ys ->(null xs && null ys) ||(not (null xs) && not (null ys) &&head xs == head ys &&tail xs == tail ys)This declares that for every type a belonging to class Eq,the type [a] also belongs to class Eq, and gives an appro-priate de�nition for equality over lists. Note that head xs== head ys uses equality at type a, while tail xs == tailys recursively uses equality at type [a]. We can now askwhether ['c','a','t'] == ['d','o','g'].Every entry in a context pairs a class name with a typevariable. Pairing a class name with a type is not allowed.For example, consider the de�nition:palindrome xs = (xs == reverse xs)The inferred signature is:palindrome :: (Eq a) => [a] -> BoolNote that the context is (Eq a), not (Eq [a]).2.2 SuperclassesA class declaration may include a context that speci�es oneor more superclasses:class (Eq a) => Ord a where(<) :: a -> a -> Bool(<=) :: a -> a -> BoolThis declares that type a belongs to the class Ord if thereare operations (<) and (<=) of the appropriate type, and ifa belongs to class Eq. Thus, if (<) is de�ned on some type,then (==) must be de�ned on that type as well. We saythat Eq is a superclass of Ord.3

The superclass hierarchy must form a directed acyclic graph.An instance declaration is valid for a class only if there arealso instance declarations for all its superclasses. For exam-pleinstance Ord Int where(<) = primLtInt(<=) = primLeIntis valid, since Eq Int is already a declared instance.Superclasses allow simpler signatures to be inferred. Con-sider the following de�nition, which uses both (==) and (<):search = \ x ys ->not (null ys) &&(x == head ys || (x < head ys &&search x (tail ys))The inferred signature is:search :: (Ord a) => a -> [a] -> BoolWithout superclasses, the inferred signature would have hadthe context (Eq a, Ord a).2.3 TranslationThe inference rules specify a translation of source programsinto target programs where the overloading is made explicit.Each instance declaration generates an appropriate corre-sponding dictionary declaration. The dictionary for a classcontains dictionaries for all the superclasses, and methodsfor all the operators. Corresponding to the Eq Int and OrdInt instances, we have the dictionaries:dictEqInt = hprimEqIntidictOrdInt = hdictEqInt, primLtInt, primLeIntiHere he1; : : : ; eni builds a dictionary. The dictionary for Ordcontains a dictionary for its superclass Eq and methods for(<) and (<=).For each operation in a class, there is a selector to extractthe appropriate method from the corresponding dictionary.For each superclass, there is also a selector to extract thesuperclass dictionary from the subclass dictionary. Corre-sponding to the Eq and Ord classes, we have the selectors:(==) = \ ((),==) -> ==getEqFromOrd = \ ((dictEq),(<,<=)) ->dictEq(<) = \ ((dictEq),(<,<=)) -> <(<=) = \ ((dictEq),(<,<=)) -> <=

Each overloaded function has extra parameters correspond-ing to the required dictionaries. Here is the translation ofsearch:search = \ dOrd x ys ->not (null ys) &&((==) (getEqFromOrd dOrd) x (head ys) ||((<) dOrd x (head ys) &&search dOrd x (tail ys)))Each call of an overloaded function supplies the appropriateparameters. Thus the term (search 1 [2,3]) translatesto (search dictOrdInt 1 [2,3]).If an instance declaration has a context, then its translationhas parameters corresponding to the required dictionaries.Here is the translation for the instance (Eq a) => Eq [a]:dictEqList = \ dEq ->h\ xs ys ->(null xs && null ys) ||(not (null xs) && not (null ys) &&(==) dEq (head xs) (head ys) &&(==) (dictEqList dEq) (tail xs) (tail ys))iWhen given a dictionary for Eq a this yields a dictionary forEq [a]. To get a dictionary for equality on list of integers,one writes dictEqList dictEqInt.The actual target language used di�ers from the above inthat it contains extra constructs for explicit polymorphism.See Section 3.2 for examples.3 NotationThis section introduces the syntax of types, the source lan-guage, the target language, and the various environmentsthat appear in the type inference rules.3.1 Type syntaxFigure 1 gives the syntax of types. Types come in threeavours: simple, overloaded, and polymorphic.Recall from the previous section the type signature forsearch, (Ord a) => a -> [a] -> Bool;which we now write in the form8�:hOrd �i) �! List �! Bool:This is a polymorphic type of the form � = 8�:�) � builtfrom a context � = hOrd �i and a simple type � = � !List � ! Bool. Here Ord is a class name, List is a type4

Type variable �Type contructor �Class name �Simple type � ! �j � �1 : : : �k (k � 0; k = arity(�))j � 0 ! �Overloaded type � ! h�1 �1; : : : ; �m �mi) � (m � 0)Polymorphic type � ! 8�1 : : :�l:�) � (l � 0)Context � ! h�1 �1; : : : ; �m �mi (m � 0)Record Type ! hv1 : �1; : : : ; vn : �ni (n � 0)Figure 1: Syntax of typesconstructor of arity 1, and Bool is a type constructor ofarity 0.The record type, , maps class operation names to theirtypes, and appears in the source syntax for classes.There is one subtlety. In an overloaded type �, entries be-tween angle brackets may have the form � � , whereas in apolymorphic type � or a context � entries are restricted tothe form � �. The extra generality of overloaded types isrequired during the inference process.3.2 Source and target syntaxFigure 2 gives the syntax of the source language. A pro-gram consists of a sequence of class and instance decla-rations, followed by an expression. The Haskell languagealso includes features such as type declarations and patternmatching, which have been omitted here for simplicity. Theexamples from the previous section �t the source syntaxprecisely.Figure 3 gives the syntax of the target language. We writethe nonterminals of translated programs in boldface: thetranslated form of var is var and of exp is exp. To in-dicate that some target language variables and expressionsrepresent dictionaries, we also use dvar and dexp.The target language uses explicit polymorphism. It givesthe type of bound variables in function abstractions, andit includes constructs to build and select from dictionaries,and to perform type abstraction and application. A pro-gram consists of a set of bindings, which may be mutuallyrecursive, followed by an expression.Notice that no class types appear in the translation. Givenan environment E as de�ned below, context and recordtypes are converted into monotypes by the function tran,de�ned as:

tran E (�) = (tran E (�1 �1); : : : ; tran E (�n �n))where � = (�1 �1; : : : ; �n �n)tran E (� �) = (tran E (�); tran E ())where (CE of E) � =class �) � � where tran E () = (�1; : : : ; �n)where = (v1 : �1; : : : ; vn : �n)This allows us to remove class types from the translationentirely.As an example, here is the translation of search from Sec-tion 2.3, amended to make all polymorphism explicit:search =��: � dOrd:tran E0 (Ord �): �x:�: �ys:[�]:not (null � ys) &&((==) � (getOrdFromEq � dOrd) x(head � ys) ||((<) � dOrd x (head � ys) &&search � dOrd x (tail � ys)))3.3 EnvironmentsThe inference rules use a number of di�erent environments,which are summarised in Figure 4.The environment contains su�cient information to verifythat all type variables, type constructors, class names, andindividual variables appearing in a type or expression arevalid. Environments come in two avours, map environ-ments and compound environments.A map environment associates names with information. Wewrite ENV name = info to indicate that environment ENV5

program ! classdecls ; instdecls ; exp Programsclassdecls ! classdecl1; : : : ; classdecln Class declaration (n � 0)instdecls ! instdecl1; : : : ; instdecln Instance declaration (n � 0)classdecl ! class �) � � Class declarationwhere instdecl ! instance �) � (� �1 : : : �k) Instance declaration (k � 0)where bindsbinds ! hvar1 = exp1 ; : : : ; varn = expni (n � 0)exp ! var Variablej � var . exp Function abstractionj exp exp0 Function applicationj let var = exp0 in exp Local de�nitionFigure 2: Syntax of source programsmaps name name to information info. If the informationis not of interest, we just write ENV name to indicate thatname is in the domain of ENV. The type of a map environ-ment is written in the symbolic form fname : infog.We have the following map environments.� The type variable environment AE contains each typevariable name � that may appear in a valid type. Thisis the one example of a degenerate map, where there isno information associated with a name. We write AE �to indicate that � is in AE.� The type constructor environment TE maps a type con-structor � to its arity k.� The type class environment CE maps a class name �to a class declaration, which contains all of the requiredtype information.� The instance environment IE maps a dictionary vari-able dvar to its corresponding type. The type indicatesthat dvar is a polymorphic function that expects onedictionary for each entry in �, and returns a dictionaryfor � � .� The local instance environment LIE is similar, exceptthe associated type is more restricted. Here the typeindicates that dvar is a dictionary for � � .� The variable environment IE maps a variable var toits associated polymorphic type �.� The local variable environment LIE is similar, exceptthe associated type is a simple type � .Environments corresponding to the examples in Section 2are shown in Figure 5.

A compound environment consists of a tuple of other envi-ronments. We have the following compound environments.� Most judgements use an environment E consisting ofa type variable, a type constructor, a type class, aninstance, a local instance, and a variable environment.� Top level rules such as those for class and instance dec-larations use an initial version PE of the environmentE. This contains an empty AE and LIE.� The judgements for class declarations produces a dec-laration environment DE consisting of a type class, aninstance, and a variable environment.Again, these are summarised in Figure 4.We write V E of E to extract the type environment V Efrom the compound environment E, and similarly for othercomponents of compound environments.The operations � and !� combine environments. The formerchecks that the domains of its arguments are distinct, whilethe latter \shadows" its left argument with its right:(ENV1 � ENV2) var =� ENV1 var if var 2 dom(ENV1) and var 62 dom(ENV2)ENV2 var if var 2 dom(ENV2) and var 62 dom(ENV1),(ENV1 !� ENV2) var =� ENV1 var if var 2 dom(ENV1) and var 62 dom(ENV2)ENV2 var if var 2 dom(ENV2).For brevity, we write E1�E2 instead of a tuple of the sumsof the components of E1 and E2; and we write E � V Eto combine V E into the appropriate component of E; and6

program ! letrec bindset in exp Programbindset ! var1 = exp1; : : : ;varn = expn Binding set (n � 0)exp ! var Variablej � pat: exp Function abstractionj exp exp0 Function applicationj let var = exp0 in exp Local de�nitionj hexp1; : : : ; expni Dictionary formation (n � 0)j ��1 : : : �n . exp Type abstraction (n � 1)j exp �1 : : : �n Type application (n � 1)pat ! var : �j (pat1; : : : ;patn) (n � 0)Figure 3: Syntax of target programsEnvironment Notation TypeType variable environment AE f�gType constructor environment TE f� : kgType class environment CE f� : class �) � � where gInstance environment IE fdvar : 8�1 : : :�k: �) � �gLocal instance environment LIE fdvar : � �gVariable environment V E fvar : �gEnvironment E (AE; TE;CE; IE; LIE; V E)Top level environment PE (fg; TE;CE; IE; fg; VE)Declaration environment DE (CE; IE; V E)Figure 4: Environmentssimilarly for other environments. Sometimes we specify thecontents of an environment explicitly and write �ENV.There are three implicit side conditions associated with en-vironments:1. Variables may not be declared twice in the same scope.If E1 � E2 appears in a rule, then the side conditiondom(E1) \ dom(E2) = ; is implied.2. Every variable must appear in the environment. IfE var appears in a rule, then the side condition var 2dom(E) is implied.3. At most one instance can be declared for a given classand given type constructor. If IE1 � IE2 appears in arule, then the side condition8 �1 (�1 �1 : : :�m) 2 IE1:8 �2 (�2 �1 : : :�n) 2 IE2:�1 6= �2 _ �1 6= �2is implied.In some rules, types in the source syntax constrain the en-vironments generated from them. This is stated explicitly
by the determines relation, de�ned as:� determines AE () ftv(�) = AE� determines LIE () � = ran(LIE)4 RulesThis section gives the inference rules for the various con-structs in the source language. We consider in turn types,expressions, dictionaries, class declarations, instance decla-rations, and full programs.4.1 TypesThe rules for types are shown in Figure 6. The three judge-ment forms de�ned are summarised in the upper left corner.7

TE0 = f Int: 0,Bool:0,List:1 gCE0 = f Eq : fclass Eq � where h(==):�! �! Booli g;Ord : fclass hEq �i) Ord �where h(<):�! �! Bool; (<=): �! �! Booli g gIE0 = f getEqFromOrd : 8�: hOrd �i) Eq �;dictEqInt : Eq Int;dictEqList : 8�: hEq �i) Eq (List �);dictOrdInt : Ord Int gV E0 = f (==):8�: hEq �i) �! �! Bool;(<): 8�: hOrd �i) �! �! Bool;(<=):8�: hOrd �i) �! �! Bool gE0 = (f g; TE0; CE0; IE0; f g; V E0)Figure 5: Initial environmentsA judgement of the form E type` �holds if in environment E the simple type � is valid. Inparticular, all type variables in � must appear in AE of E(as checked by rule TYPE-VAR), and all type constructorsin � must appear in TE of E with the appropriate arity (aschecked by rule TYPE-CON). The other judgements actsimilarly for overloaded types and polymorphic types.Here are some steps involved in validating the type8�: hOrd �i) �! �! Bool. Let AE = f�g and let E0be as in Figure 5. Then the following are valid judgements:(1) E0 �AE type` �! �! Bool;(2) E0 �AE over-type` hOrd �i) �! �! Bool;(3) E0 poly-type` 8�: hOrd �i) �! �! Bool:Judgement (1) yields (2) via TYPE-PRED, and judgement(2) yields (3) via TYPE-GEN.The type inference rules are designed to ensure that all typesthat arise are valid, given that all types in the initial envi-ronment are valid. In particular, if all types appearing inthe CE, IE, LIE, and V E components of E are valid withrespect to E, this property will be preserved throughout theapplication of the rules.4.2 ExpressionsThe rules for expressions are shown in Figure 7. A judge-ment of the form E exp̀ exp : � ; exp

holds if in environmentE the expression exp has simple type� and yields the translation exp. The other two judgementsact similarly for overloaded and polymorphic types.The rules are very similar to those for the Hindley-Milnersystem. The rule TAUT handles variables, the rule LEThandle let binding, the rules ABS and COMB introduceand eliminate function types, and the rules GEN and SPECintroduce and eliminate type quanti�ers. The new rulesPRED and REL introduce and eliminate contexts. Just asthe rule GEN shrinks the type variable environmentAE, therule PRED shrinks the local instance environment LIE.Here are some steps involved in typing the phrase\ x y -> x < y. Let E0 be as in Figure 5, and let AE =f�g, LIE = fdOrd : Ord �g, and V E = fx : �; y : �g.
8

E exp̀ exp : � ; expE over-exp` exp : � ; expE poly-exp` exp : � ; exp(V E of E) var = �TAUT E poly-exp` var : � ; varE poly-exp` var : 8�1 : : :�k:�) � ; varE type` �i (1 � i � k)SPEC E over-exp` var : (�) �)[�1=�1; : : : ; �k=�k] ; var �1 : : : �kE over-exp` var : �) � ; expE dicts` � ; dexpsREL E exp̀ var : � ; exp dexpsE !�VE fvar : � 0g exp̀ exp : � ; expABS E exp̀ �var. exp : � 0 ! � ; �var: � 0. expE exp̀ exp : � 0 ! � ; expE exp̀ exp0 : � 0 ; exp0COMB E exp̀ (exp exp0) : � ; (exp exp0)E � LIE dicts` � ; dpat � determines LIEE � LIE exp̀ exp : � ; expPRED E over-exp` exp : �) � ; � dpat : tran E (�) : expE �AE f�1; : : : ; �kg over-exp` exp : �) � ; expGEN E poly-exp` exp : 8�1 : : :�k: �) � ; ��1 : : :�k . expE poly-exp` exp0 : � ; exp0E !�V E fvar : �g exp̀ exp : � ; expLET E exp̀ let var = exp0 in exp : � ; let var = exp0 in expFigure 7: Rules for expressions9

E typè �E over-type` �) �E poly-type` 8�1; : : : ; �n: �) �(AE of E) �TYPE-VAR E type` �(TE of E) � = kE type` �i (1 � i � k)TYPE-CON E type` � �1 : : : �k(CE of E) �i (1 � i � m)(AE of E) �i (1 � i � m)E type` �TYPE-PRED E over-type` h�1 �1; : : : ; �m �mi) �E �AE f�1; : : : ; �kg over-type` �) �TYPE-GEN E poly-type` 8�1 : : :�k: �) �Figure 6: Rules for typesThen the following are valid judgements:(1) E0 �AE � LIE � V E exp̀ x < y : Bool;(<) � dOrd x y(2) E0 �AE � LIE exp̀ \ x y -> x < y:�! �! Bool;�x : �: �y : �: (<) � dOrd x y(3) E0 �AE over-exp` \ x y -> x < y:hOrd �i) �! �! Bool;�dOrd : tranE0(Ord �):�x : �: �y : �: (<) � dOrd x y(4) E0 poly-exp` \ x y -> x < y:8�: hOrd �i) �! �! Bool;��: �dOrd : tranE0(Ord �):�x : �: �y : �: (<) � dOrd x y

Judgement (1) yields (2) via ABS, judgement (2) yields (3)via PRED, and judgment (3) yields (4) via GEN.As is usual with such rules, one is required to use prescienceto guess the right initial environments. For the SPEC andGEN rules, the method of transforming prescience into analgorithm is well known: one generates equations relatingtypes during the inference process, then solves these equa-tions via uni�cation. For the PRED and REL rules, a sim-ilar method of generating equations can be derived.4.3 DictionariesThe inference rules for dictionaries are shown in Figure 8.A judgement of the formE dict` � � ; dexpholds if in environment E there is an instance of class �at type � given by the dictionary dexp. The other twojudgements act similarly for overloaded and polymorphicinstances.The two DICT-TAUT rules �nd instances in the IE andLIE component of the environment. The DICT-SPECrule instantiates a polymorphic dictionary, by applying itto a type. Similarly, the DICT-REL rule instantiates anoverloaded dictionary, by applying it to other dictionaries,themselves derived by recursive application of the dictionaryjudgement.The rule that translates an entire context into a tuple of thecorresponding dictionaries has the judgement formE dicts` � ; dexpsHere is how to derive a dictionary for the instance of classEq at type Int. Let E0 be as in Figure 5. Then the followingjudgements hold:(1) E0 poly-dict` 8�: hEq �i) Eq (List �) ; dictEqList(2) E0 over-dict` hEq Inti) Eq (List Int) ; dictEqList Int(3) E0 dict` Eq Int ; dictEqInt(4) E0 dict` Eq (List Int) ; dictEqList Int dictEqIntJudgement (1) holds via DICT-TAUT-IE, judgement (2)follows from (1) via DICT-SPEC, judgement (3) holds viaDICT-TAUT-IE, and judgement (4) follows from (2) and(3) via DICT-REL.Note that the dictionary rules correspond closely to theTAUT, SPEC, and REL rules for expressions.10

E dict̀ � � ; dexpE over-dict` �) � � ; dexpE poly-dict` 8�1 : : : �n: �) � � ; dexpE dicts` � ; dexps(LIE of E) dvar = � �DICT-TAUT-LIE E dict` � � ; dvar(IE of E) dvar = 8�1 : : : �n: �) � (� �1 : : : �n)DICT-TAUT-IE E poly-dict` 8�1 : : :�n: �) � (� �1 : : :�n) ; dvarE poly-dict` 8�1 : : :�n:�) � � ; dexpDICT-SPEC E over-dict` (�) � �)[�1=�1; : : : ; �n=�n] ; dexp �1 : : : �nE over-dict` �) � � ; dexpE dicts` � ; dexpsDICT-REL E dict` � � ; dexp dexpsE dict` �i �i ; dexpi (1 � i � n)DICTS E dicts` h�1 �1; : : : ; �n �ni ; hdexp1; : : : ;dexpniFigure 8: Rules for dictionaries4.4 Class declarationsThe rule for class declarations is given in Figure 9. Althoughthe rule looks formidable, its workings are straightforward.A judgement of the formPE classdecl` classdecl : DE ; bindsetholds if in environment PE the class declaration classdecl isvalid, generating new environment DE and yielding trans-lation bindset. In the compound environment DE =(CE; IE; V E), the class environment CE has one entry thatdescribes the class itself, the instance environment IE hasone entry for each superclass of the class (given the classdictionary, it selects the appropriate superclass dictionary)and the value environment V E has one entry for each op-erator of the class (given the class dictionary, it selects theappropriate method).
For example, the class declaration for Ord given inSection 2.2 yields the Ord component of CE0, thegetEqFromOrd component of IE0, and the (<) and (<=)components of V E0, as found in Figure 5. The binding setgenerated by the rule is as shown in Section 2.3.4.5 Instance declarationsThe rule for instance declarations is given in Figure 11.Again the rule looks formidable, and again its workings arestraightforward.A judgement of the formPE instdecl` instdecl : IE ; bindsetholds if in environmentPE the instance declaration instdeclis valid, generating new environment IE and yielding trans-11

E classdecl` classdecl : DE ; bindsetPE �AE type` � � determines AEPE �AE � LIE dicts` � ; dpat � determines LIEPE �AE sigs̀ ; mpatCLASS PE classdecl` class �) � � where :(f� : class �) � � where g;fdvar : � �: h� �i) �0 � 0 j dvar : �0 � 0 2 LIEg;fvar : � �: h� �i) � j var : � 2 g);fdvar = � �: � (dpat;mpat) : (tran PE (�); tran PE ()) : dvarj dvar 2 dom(LIE)g [fvar = � �: � (dpat;mpat) : (tran PE (�); tran PE ()) : varj var 2 dom()gFigure 9: Rule for class declarationsE sigs̀ sigs ; sigsE type` �i (1 � i � m)SIGS E sigs̀ hvar1 : �1; : : : ; varm : �mi ; hvar1; : : : ; varmiFigure 10: Rule for class signaturesE instdecl` instdecl : IE ; bindset(CE of PE) � = class �0) � � where 0PE �AE type` � � determines AEPE �AE � LIE dicts` � ; dpat � determines LIEPE �AE � LIE dicts` �0[�=�] ; dexpPE �AE � LIE binds` binds : 0[�=�] ; bindsINST PE instdecl` instance �) � � where binds:fdvar = 8 dom(AE): �) � �g;dvar = � dom(AE): � dpat : tran PE (�): hdexp;bindsiFigure 11: Rule for instance declarations12

E binds` binds : ; bindsE exp̀ expi : expi ; �i (1 � i � m)BINDS E binds` hvar1 = exp1; : : : ; varm = expmi:hvar1 : �1; : : : ; varm : �mi;hvar1 = exp1; : : : ;varm = expmiFigure 12: Rule for instance bindingslation bindset. The instance environment IE contains asingle entry corresponding to the instance declaration, andthe bindset contains a single binding. If the header of theinstance declaration is �) � � , then the correspondinginstance is a function that expects one dictionary for eachentry in �, and returns a dictionary for the instance.The �rst line looks up the superclasses and record type ofthe instance class. Line (2) sets AE to contain the type vari-ables in � . Line (3) sets LIE to contain the types in �, theinstance context, and builds the pattern for the dictionaryparameters. Line (4) checks that the superclasses are satis-�ed by the LIE and builds the dictionaries for those super-classes. Finally, line (5) checks that the method de�nitionshave precisely the types of the class operations instantiatedby the instance type, and builds the method translations.For example, the instance declarations for Eq Int, (Eq a)=> Eq [a], and Ord Int yield the dictEqInt, dictEqList,and dictOrdInt components of IE0 as found in Figure 5,and the bindings generated by the rule are as shown in Sec-tion 2.3.4.6 ProgramsFigure 13 gives the rules for declaration sequences and pro-grams.The order of the class declarations is signi�cant, becauseat the point of a class declaration all its superclasses mustalready be declared. (This guarantees that the superclasshierarchy forms a directed acyclic graph.) Further, all classdeclarations must come before all instance declarations.Conversely, the order of the instance declarations is irrele-vant, because all instance declarations may be mutually re-cursive. Mutual recursion of polymorphic functions doesn'tcause the problems you might expect, because the instancedeclaration explicitly provides the needed type information.These di�erences are reected in the di�erent forms of theCDECLS and IDECLS rules. That instance declarations

are mutually recursive is indicated by line (2) of the PROGrule, where the same environment IE appears on the leftand right of the instdecl rule.In Haskell, the source text need not be so ordered. A pre-processing phase performs a dependency analysis and placesthe declarations in a suitable order.5 Implementing the rulesOur major goal in writing the type rules was to provide abasis for an implementation.In writing the rules and the implementation, we had the pic-ture in Figure 2 in our minds. Each syntactic non-terminalin the grammar of the language (such as expressions, exp)corresponds one-to-one with a judgement form (such as exp̀).The implementation was designed so that each judgementform in turn corresponds one-to-one with a function (suchas tcExpr, the function which typechecks expressions).The structure extends further. Each production in the gram-mar corresponds one-to-one with a type rule, and that inturn corresponds one-to-one with a case in the de�nition ofthe appropriate function. For example, the productionexp -> exp_1 exp_2corresponds to the rule COMB, and to a case in the de�nitionof tcExpr which beginstcExpr (App e1 e2) ... = ...Lastly, the type of the function that corresponds to a judge-ment form is systematically derived from the signature ofthat judgement form. For example, the signature of exp̀ isE exp̀ exp : � ; exp13

PE classdecls` classdecls : DE ; bindsetPE �DE1 � : : :�DEi�1 classdecl` classdecli : DEi ; bindseti (1 � i � n)CDECLS PE classdecls` classdecl1 ; : : : ; classdecln : DE1 � : : :�DEn;bindset1; : : : ;bindsetnPE instdecls` instdecls : IE ; bindsetPE instdecl` instdecli : IEi ; bindseti (1 � i � n)IDECLS PE instdecls` instdecl1 ; : : : ; instdecln : (IE of PE)� IE1 � : : :� IEn;bindset1; : : : ;bindsetnPE program` program : (DE; �) ; exp(1) PE classdecls` classdecls : DE ; bindsetC(2) PE �DE � IE instdecls` instdecls : IE ; bindsetI(3) PE �DE � IE exp̀ exp : � ; expPROG PE program` classdecls ; instdecls ; exp : (DE � IE; �);letrec bindsetC ; bindsetI in expFigure 13: Rules for declaration sequences and programsand the type of tcExpr istcExpr :: Env -> Expr -> TcM (Expr, Type)That is, tcExpr takes an environment and an expressionto be typechecked, and returns the translated expression,along with its inferred type.Notice that the monad TcM appears in the result type oftcExpr. One might have thought that tcExpr would havetype Env -> Expr -> (Expr, Type), a function from ex-pressions to types, but quite a lot of \plumbing" is requiredbehind the scenes. Firstly, if there is a type error in the pro-gram, the type-inference process can failwhen type-checkingfun or arg, or during the uni�cation step. Secondly, theremust be a unique-name supply from which to manufacturea new type variable. Thirdly, there must be some way ofcollecting and displaying error messages. Fourthly, the uni-�cation process works by incrementally augmenting a sub-stitutionmapping type variables to types. All of these wouldusually be handled in an imperative language by side e�ects,or by some sort of exception-handling mechanism. We han-
dle them all using a monad, TcM, which is de�ned astype TcM a = Uniq -> Subst ->Maybe (a, Uniq, Subst)data Maybe a = Nothing | Just aA tutorial on monads as they are used in the compiler ap-pears in the appendix.Programming using monads has a number of bene�ts.Firstly, the plumbing is implicit, which makes the programmuch easier to read and write.Secondly, because the plumbing is all encapsulated in oneplace, it is very easy to modify. For example, well over ayear after the type checker was working we added an errorrecovery mechanism, so that a single type error would notcause the entire type-checker to halt. It is now possibleto recover from the error, and gather several accurate typeerror messages in one run of the compiler. This was achievedin a single afternoon's work, modifying very localised parts14

of the type checker.5.1 The typechecker implementationThe only di�culty in translating rules into code is decidingwhich components of the judgement signature should go intothe function as its arguments, and what should come out ofthe function as its result. This is not an easy question,because type rules are deliberately relational in style, andtherefore ambiguous about the direction of data ow. Intranslating them into functions, these data ow directionsmust be made explicit.The major change needed to implement a functional versionof these rules requires computing the LIE directly. This isdone in each of the expression rules, which combine LIEscalculated for the leaves of the abstract syntax tree. Thedictionary rules are explicitly passed an LIE, rather thanbuilding it up relationally in the incoming environment.5.1.1 ApplicationLet Expr be the data-type for abstract syntax, andSimpleType, OverType and PolyType represent the types�; �; �. The types of exp, over exp and dicts areexp :: E -> Expr -> TcM (Expr, SimpleType, LIE)over_exp :: E -> Expr -> TcM (Expr, OverType, LIE)dicts :: E -> LIE -> TcM (Expr, Theta)To start o� with, we present the (slightly simpli�ed) codefrom the compiler for type-checking an application:tcExpr (Ap fun arg)= tcExpr fun `thenTcM` (\(fun',fun_ty,lie_fun) ->tcExpr arg `thenTcM` (\(arg',arg_ty,lie_arg) ->newTyVar `thenTcM` (\ res_ty ->unify fun_ty (arg_ty `arrow` res_ty)`thenTcM` (\ () ->returnTcM (Ap fun' arg', res_ty,plusLIE lie_fun lie_arg)))))At an informal level this code should be legible even byreaders with no experience of type inference. It can be readlike this: \To typecheck an application Ap fun arg, �rsttypecheck fun, inferring the type fun ty, then typecheckarg, inferring the type arg ty. Now invent a fresh typevariable res ty, and unify fun ty with arg ty -> res ty.Finally, return res ty as the type of the application."

5.1.2 REL and PREDNext, we'll show how the two new expression rules, REL andPRED can be implemented using monads, and then sketchthe rest of the implementation.Here is the implementation of the REL rule. A new LIE iscreated from new variable names given by the monad state.exp e (Var v)= over_exp e (Var v) `thenTcM`(\ (expr, Arrow theta simple, _) ->mkNewLIE theta `thenTcM` (\ lie ->dicts e lie `thenTcM` (\ (dexprs, _) ->returnTcM (mkDictApp expr dexprs, simple,lie))))The implementation of the PRED rule is more complex. No-tice that the LIE inferred for an expression may constrainfree type variables in the type environment; the correspond-ing dictionaries should not appear in the outgoing LIE. Thuslie expr must be split into two pieces by splitLIE.over_exp e expr= exp e expr `thenTcM` (\ (expr', simple,lie_expr) ->(let (lie_theta, lie_enclosing) =splitLIE simple e lie_exprindicts e lie_theta `thenTcM` (\(dpat,theta) ->returnTcM (mkLambda dpat (tran e theta) expr',Arrow theta simple,lie_enclosing))))The rest of the expression rules and the dictionary rules pro-vide a straightforward implementation. The circularity inthe top-level rules, which requires that instance de�nitionsbe based on top-level bindings and which in turn dependon instance de�nitions, can be implemented by using twopasses.6 ConclusionsThis paper makes two contributions. First, it presentsa minimal, readable set of inference rules to handle typeclasses in Haskell, derived from the full static semantics[PW91]. An important feature of this style of presentationis that it scales up well to a description of the entire Haskelllanguage, as we have found in practice.Second, the paper has shown how these rules can be directlyimplemented using monads. This style has been applied15

to the full static semantics in order to construct the typechecker used in the Glasgow Haskell compiler, as well asvirtually all other passes in the compiler. It has undoubtedlysaved us from initiallymaking countless bookkeeping errors,and continues to pay o� as we maintain our code and trainstudents to work with it.Together, these form a useful bridge between more tradi-tional theoretical papers on type theory and papers describ-ing particular compiler implementations.References[Aug93] L. Augustsson, Implementing Haskell Overload-ing. In Functional Programming and ComputerArchitecture, Copenhagen, June 1993.[Blo91] S. Blott, Type classes. Ph.D. Thesis, GlasgowUniversity, 1991.[Car87] L. Cardelli, Basic Polymorphic Typechecking.Science of Computer Programming, Vol. 8,1987, pp. 147{172.[CHO92] K. Chen, P. Hudak, and M. Odersky, Paramet-ric Type Classes. In Lisp and Functional Pro-gramming, 1992, pp. 170{181.[CW90] G. V. Comack and A. K. Wright, Type de-pendent parameter inference. In ProgrammingLanguage Design and Implementation, WhitePlains, New York, June 1990, ACM Press.[DM82] L. Damas and R. Milner, Principal type schemesfor functional programs. In ACM Symposiumon Principles of Programming Languages, Al-buquerque, N.M., January 1982.[Gir72] J.-Y. Girard, Interpr�etation functionelle et�elimination des coupures dans l'arithm�etiqued'ordre sup�erieure. Ph.D. thesis, Universit�eParis VII, 1972.[HaBl89] K. Hammond and S. Blott, ImplementingHaskell Type Classes. In 1989 Glasgow Work-shop on Functional Programming, Fraserburgh,Scotland, September 1989, Springer-VerlagWICS, pp. 266{286.[Han87] P. Hancock, Chapters 8 and 9 In S. L. Pey-ton Jones, The implementation of functionalprogramming languages, Prentice-Hall Interna-tional, Englewood Cli�s, New Jersey, 1987.[Hin69] R. Hindley, The principal type scheme of anobject in combinatory logic. Trans. Am. Math.Soc. 146, December 1969, pp. 29{60, .[HPW92] P. Hudak, S. L. Peyton Jones, and P. Wadler,editors, Report on the Programming LanguageHaskell, Version 1.2. SIGPLAN Notices, May1992.

[Hue 90] Gerard Huet, editor, Logical Foundationsof Functional Programming, Addison Wesley,1990. See Part II, Polymorphic Lambda Calcu-lus, especially the introduction by Reynolds.[Jon92a] M. P. Jones, A theory of quali�ed types. InEuropean Symposium on Programming, Rennes,February 1992, LNCS 582, Springer-Verlag.[Jon92b] M. P. Jones, E�cient Implementation of TypeClass Overloading. Dept. of Computing Science,Oxford University.[Jon93] M. P. Jones, A System of Constructor Classes:Overloading and Implicit Higher-Order Poly-morphism. In Functional Programming andComputer Architecture, Copenhagen, June1993, pp. 52{61.[Kae88] S. Kaes, Parametric polymorphism. In EuropeanSymposium on Programming, Nancy, France,March 1988, LNCS 300, Springer-Verlag.[L�au92] Polymorphic Type Inference and Abstract DataTypes. K. L�aufer, Ph.D. Thesis, New York Uni-versity, 1992.[L�au93] An Extension of Haskell with First-Class Ab-stract Types. K. L�aufer, Technical Report, Loy-ola University of Chicago, 1993.[MTH90] R. Milner, M. Tofte, and R. Harper, The de�-nition of Standard ML, MIT Press, Cambridge,Massachusetts, 1990.[MT91] R. Milner and M. Tofte, Commentary onStandard ML, MIT Press, Cambridge, Mas-sachusetts, 1991.[Mil78] R. Milner, A theory of type polymorphism inprogramming. J. Comput. Syst. Sci. 17, 1978,pp. 348{375.[NP93] T. Nipkow and C. Prehofer, Type CheckingType Classes. In ACM Symposium on Princi-ples of Programming Languages, January 1993,pp. 409{418.[NS91] T. Nipkow and G. Snelting, Type Classes andOverloading Resolution via Order-Sorted Uni�-cation. In Functional Programming Languagesand Computer Architecture, Boston, August1991, LNCS 523, Springer-Verlag.[OdL�a91] M. Odersky and K. L�aufer, Type classes aresignatures of abstract types. Technical Report,IBM TJ Watson Research Centre, May 1991.[Pey87] S. L. Peyton Jones, The implementation of func-tional programming languages, Prentice-Hall In-ternational, Englewood Cli�s, New Jersey, 1987.[PW91] S. L. Peyton Jones and P. Wadler, A static se-mantics for Haskell. Department of ComputingScience, Glasgow University, May 1991.16

[Rey74] J. C. Reynolds, Towards a theory of type struc-ture. In B. Robinet, editor, Proc. Colloque surla Programmation, LNCS 19, Springer-Verlag.[Rey85] J. C. Reynolds, Three approaches to type struc-ture. In Mathematical Foundations of SoftwareDevelopment, LNCS 185, Springer-Verlag, 1985.[Rou90] F. Rouaix, Safe run-time overloading. In ACMSymposium on Principles of Programming Lan-guages, San Francisco, January 1990, ACMPress.[Tur85] D. A. Turner, Miranda: A non-strict functionallanguage with polymorphic types. In FunctionalProgramming Languages and Computer Archi-tecture, Nancy, France, September 1985, LNCS201, Springer-Verlag, pp. 1{16.[VS91] D. M. Volpano and G. S. Smith, On the com-plexity of ML typability with overloading. InFunctional Programming Languages and Com-puter Architecture, Boston, August 1991, LNCS523, Springer-Verlag.[Wad92] P. L. Wadler, The essence of functional pro-gramming. In ACM Symposium on Principlesof Programming Languages, Albuquerque, NewMexico, January 1992.[WB89] P. L. Wadler and S. Blott, How to make ad-hoc polymorphism less ad hoc, In ACM Sympo-sium on Principles of Programming Languages,Austin, Texas, January 1989, pp. 60{76.A A tutorial on compiler monadsA monad is an abstract data type with a set of operations,typically `return', and `then' [Wad92]. We'll refer to `func-tions which use monads' as monad functions, as distinctfrom monad operations. If f has type a -> b, then the cor-responding monad function f' has type a -> M b. Thesefunctions are given access to the monad state only by monadoperations.Here is a typical compiler monad which passes aroundunique variable names. The supply must be passed in andout of each monad operation. The name supply is seen onlyby the monad operation getName which removes one nameand passes the depleted supply back to the monad.type NameSupply = [Int]type M result = NameSupply ->(NameSupply, result)getName :: M NamegetName (n:name_supply) = (name_supply, n)

The operations `returnM' and `thenM' do the plumbing; thesimplest of these is `returnM'.returnM :: result -> M resultreturnM result name_supply = (name_supply, result)The most complex monad operation is `thenM'. In general,its type shows that it takes a computation of type a, and afunction (continuation) from a value of type a to a compu-tation of type b, yielding a computation of type b. It worksas follows:1. perform the �rst computation to yield a value of typea;2. apply the continuation to this to get a value of type b;3. this value is combined with the e�ects of the two com-putations in an appropriate way, and this combinationis a computation of type b.For example, the implementation of `thenM' for this partic-ular monad is:thenM :: M a -> (a -> M b) -> M bthenM e k name_supply= case (e name_supply) of(next_name_supply, result) ->k result next_name_supplyThe expression e receives the name supply, which it canaccess and update, returning the new supply. Its value ispassed to the continuation, which gets the new name sup-ply. Since nothing needs to be done to combine the value ofthe continuation with the monad state, the result of `thenM`is just the application of the continuation. Another monadmight look at the state returned by this application andcombine it with the �rst state which was returned by eval-uating e.One particularly useful feature of monads is that they canalso propagate errors. To do this, we alter M as follows:type ErrorType = Stringdata MaybeErr res err = Succeeded res |Failed errtype M result = NameSupply ->MaybeErr (NameSupply, result)ErrorTypeThe corresponding monad operations are:returnM :: result -> M resultreturnM result name_supply= Succeeded (name_supply, result)17

thenM :: M a -> (a -> M b) -> M bthenM e k name_supply= case (e name_supply) ofSucceeded (next_name_supply, result)-> k result next_name_supplyFailed err -> Failed errNotice that if evaluation of e fails, then the continuation isnever applied.We add a new monad operation to introduce failures:failM :: ErrorType -> M afailM err = Failed err

18

