
Algorithms, The λ Calculus and Programming

Developing The Intuition Behind Functional Programming

Abhijat Vichare
Computational Research Laboratories, Pune.

June 24, 2009

Author
Abhijat Vichare is currently a Scientist at Computational Research Laboratories, Pune. Prior to
this, he has explored GCC internals at I.I.T. Bombay and has developed a model to understand
the architecture of GCC. He has also taught at the Department of Computer Science, Pune
University. He is interested in programming languages and functional programming. He can be
reached by email at: abhijatv@gmail.com or by post at:
C3/701, Kumar Parisar Society,
Near Gandhi Bhavan,
Kothrud, Pune - 411038.
Phone: +91-020-25305062
Mobile: +91-9960355169

Summary
I develop the intuition behind the λ calculus and connect it to computer programming through
some basic examples. This fills an often felt gap that teachers and students find between the
formal structure of the λ calculus, and the principles and practice of functional programming.

Keywords: λ calculus, functional programming, Scheme

Languages like Fortran, Pascal, C and C++ are some of the most commonly used ones for program-
ming computers. Despite the differences between them, all of them actually have common roots from
a purely computer science point of view. They all belong to the class of the so called imperative
languages. Unfortunately, their ubiquity results in some common misconceptions such as the other
kinds of languages, if any, are (a) “practically not important”, (b) “difficult to understand”, (c)
“theoretical”, and (d) inefficient. Students often hear of no other languages than these and inno-
cently commit the mistake of learning only such “popular” languages. Further, most syllabi actively
present these popular languages and often pay a lip service to these other classes of languages. Yes
there are more than one other classes of programming languages!

There are a number of reasons – both good and bad – for a rather extreme focus on only imperative

1



languages. In this article I deal with one of them: programming in one class of these alternate
languages is difficult to understand for students and difficult to teach for teachers. I address this Alternate Lan-

guages are not
difficult if we
understand
the intuition
behind the
formalism.

problem by developing the intuition behind one such alternate paradigm – the λ Calculus – which
gives us functional programming. For some excellent introduction to functional programming see [1],
[2] which use Haskell, and [3] which uses Scheme. The λ calculus is model of computation equivalent
to the Turing Machine. It is useful for mathematical analysis of programming languages as well as
advanced computer science. We focus the intuition on the former and the presentation is informal
in style. The essential concepts are intuitively developed and mathematical rigour is sacrificed.
However this can be recovered by consulting a formal presentation. This article is similar in spirit
to the article Algorithms as Machines by Kamal Lodhaya (see [4]) that has appeared in this journal
before.

1 Algorithms

Historically, human beings have intuitively understood the idea of an algorithm. During the early
years of the twentieth century mathematicians and logicians had to deal with questions like: “What is
a function?”, and “What is an effective procedure?”. These apparently distinct questions eventually
led to formal models of idea of an algorithm. We know a function as a rule that maps one object
from a set to one another object in possibly another set. On the other hand, we informally know
an algorithm, or an effective procedure, as: a step-by-step procedure that describes the solution
process for a given class of problems. When applied to a given problem from that class, an effective
procedure yields the answer. The steps are finite in number and the use of the algorithm procedure
is expected to terminate in a finite amount of time. Thus to add two natural numbers written in
the decimal system we follow the steps shown in Fig.(1).

The algorithm in Fig.(1) captures the essence of the solution process of the “addition” class of
problems. The algorithm as presented exhibits some interesting features:

• The number of steps are finite.
• There is no limit on the number of digits that the numbers may have to be successfully added.

In fact, it is independent of the “size”, i.e. the number of digits, of the numbers that it receives
for addition.

• The time taken to obtain the sum is finite; the sum will be obtained in some finite time.
• It is extremely “mechanical” in operation. There is no “smartness” required to produce the

result once the algorithm is given. The central
idea of an
algorithm is
that the de-
tails are so
clearly known
that even a
machine can
do it.

The above features reflect our intuitive understanding of the concept of an algorithm.

Algorithms are valuable mental constructs since we can run them in our imagination and obtain the
result without actually manipulating the physical world. If the algorithm is correct then we are sure
that if we did manipulate the physical world then it would be precisely in the state corresponding to
the answer. Thus, according to the algorithm above the sum of “95” and “14” is “109”. Manipulating
the physical world if we took 95 pebbles and 14 pebbles and “added” them we would have 109 pebbles!

2



There are many operations that are not “algorithmic”. For instance,

lim
x→∞

1
x2

is such an operation. It is not clear if the “number of steps” required to compute the limit are finite.
Indeed, the “number of steps” may not even be countable! The number of terms in the sequence is
infinite. As a consequence if we try a very “algorithmic” way to obtain the limit we have to keep on
examining an infinite set of terms. This implies that an infinite time would be required to obtain
the result! Unless some intelligence is employed to leap to the limit value it is not possible to arrive
at the result. Zeno’s paradoxes elegantly bring out the non-algorithmic nature of such operations.

The question mathematicians were concerned with was: can the behaviour of the notion of an
algorithm be captured formally? In other words, can we model the notion of an algorithm? As
History tells us the third and the fourth decades of the twentieth century gave apparently three
different answers in the form of mathematical models: the theory of partial recursive functions, the
λ calculus [see 5] and the Turing machine. More models followed later. Alan Turing proved that
these models were equivalent and hence the differences were only superficial. Today we know these as
models of computation. The popular programming languages we started this article with are based
on the Turing machine model of computation. Such languages are called as imperative languages.
Computer programming and programming languages can be, and are also, based on other models.
We will deal with the λ calculus in this article. The alternate method of programming computers
based mainly on the λ calculus is called functional programming.

The rest of the article tries to show the intuition behind the λ calculus and uses this to motivate
functional programming.

2 The λ Calculus

Let us take a second, more relaxed, look at the addition algorithm in the previous section. Consider
the essential part of step 3: “Add the digits at the current place”. We have some important
words or phrases: “Add”, “digits” and “current place”. Each word or phrase is an answer to some
important question. At step 3 we need to answer questions like: “What to do ?”, “On whom to do ?”
and “Where to do ?”. In general any algorithm “answers” such questions at each step. Sometimes
the answers are obtained directly. Thus “What to do ?” is answered directly as “Add” in step 3. At
other times the answers are obtained as a result of the other steps of the algorithm. Thus “Where
to do ?” (i.e. the “current place”) is answered by the other steps in the algorithm. In the above
algorithm it is mainly answered by step 6.

The second relaxed look at the addition algorithm brings out some general features of algorithms.

• Algorithms need an ability to identify “stuff”. “Stuff” can be anything. Some “stuff” are
active entities like operations like “Add”. Other “stuff” are passive entities like “digits”, or
“current place”.

• Some stuff transform other stuff into some other stuff. Thus, given the “digits” stuff the
“Add” stuff transforms them into other “digits” – their sum.

3



• It must be possible to connect one stuff to another stuff. Thus we need the ability to give the
actual “digits” stuff to the “Add” stuff so that step 3 in Fig.(1) is effective.

Thus the three key words: identify, transform and connect form the essential capabilities that are
required for the description of an algorithm. It does not matter how we identify as long as each Identify, trans-

form and
connect form
the essential
capabilities
that are re-
quired for the
description of
an algorithm.

distinct “stuff” is identified uniquely. As human beings we use names to identify. Thus, “Add” is
a name, “digits” is another name. The transformation ability describes the changes in given stuff.
It is typically a rule (or a set of rules) that tell us how to change given stuff. Note that the stuff
is assumed to be given and then the “how to” of the change is described. For a transformation to
be effective, we need the ability to connect actual named stuff to the stuff assumed as given for the
transformation.

We are now ready to define the fundamental formal syntax of the λ calculus [see 5]. All that we are
really going to do is to symbolically express the three key words above, namely identify, transform
and connect. We will also give the technical terms that are normally used instead of these words.

The syntax of the λ calculus is defined in terms of the notion of a λ term, defined in Fig.(2).

A variable corresponds to the ability to identify, or name, objects. A function abstraction corre-
sponds to the ability to transform. A application corresponds to the ability to connect. Note that in
function abstraction the notation “f(x)” uses the usual notation of a function to express transfor-
mation, but can be any λ term. The “x” in f(x) is the name of the object that must be given later
when the transformation is put to use. The prefix “λx” emphasises this place holding nature of x
and makes it explicit. The “.” separates this explicit specification from the actual transformation
body f(x). Since the “x” acts as a place holder in the body f(x) it is called the bound variable or
a dummy variable. Variables that are not bound in an expression are called free variables. Familiar
examples of expressions that contain bound variables are:

∑N
i i2 where i is the bound variable, or∫ x=x2

x=x1
f(x)dx where x is the dummy variable. The body of the abstraction is the range over which

the bound variable is effective. This range is called the scope of the bound variable.

The semantics of the above syntactic structure is captured in three rules of conversion called the
α, β and η rules. These rules give “meaning” to the operation of the syntax by specifying what λ
term should result due to the syntax. For our purposes the most important rule is the β rule that
specifies the λ term to be obtained when a λ term M is applied to another λ term N . The rule
states that every occurrence of the bound variable of M in it’s body is replaced by the λ term N .
As an example let M ≡ λx.(x + 2) and N ≡ 3 be two λ terms. The λ term M is an abstraction,
the expression (x + 2) in M is the body of that term, and x is the variable. The λ term M can
be read as: Given some x yield the result of adding ‘2’ to it. Applying M to N , i.e. (M N) is
((λx.(x+ 2)) 3). The β rule is now used to “process” this application: Every x in the body of M is
replaced by 3. After the β reduction the application simply reads as: (3 + 2), which evaluates to 5!

Historically, the λ calculus was developed by Alonzo Church and others to study functions. The
syntax and the conversion rules attempt to capture the notion of a “function”. However, as Alan
Turing showed later, this notion captures the same class of functions that are described by Turing
machines. Hence the λ calculus also serves as a model for algorithmic behaviour. This article
therefore could also be named: Algorithms as Functions!

4



3 Computation and λ Calculus

The λ calculus sketched in the above paragraphs appears so simple that it appears to be far away
from computation. I will now demonstrate using a number of simple examples that the λ calculus The λ calcu-

lus is decep-
tively simple.

actually is an extremely powerful way of looking at computer programs. The examples will show
that the main skill is in the ability to write the λ terms, particularly function abstractions, for
various programming tasks. The examples are elementary but instructive.

3.1 Boolean Values and Operations

Boolean algebra has two values, > and ⊥ (usually represented as “True/“1” and “False”/“0”
respectively) and operations like ¬ (negation), ∧ (logical AND), ∨ (logical OR) etc. We usually
tend to view values as “passive” data objects. However, if we reflect for a moment then we can
change our perspective to view these values as “active”. Formally, the boolean values “True” and
“False” do not have any meaning like the conventional sense. In fact, they are just two different
values (which is emphatically stressed by using the symbols > and ⊥ respectively). These values
actually help us to select between two different choices. Thus if we have two objects to choose from
then we can imagine a boolean value, say True, as the entity that helps us to actively select first of
the given two. We then say that the act of applying True to the two objects should yield the first
of the two. This directly gives us the construction of the λ term for the True object as:

True ≡ λx. (λy. x) (1)

We can read Eq.(1) as: given two objects x first and then y, True is the name of the λ term that
yields the first object x as a result of its transformation activity. Observe that “λy.x” is the body of
the λ term: λx. (λy. x). The parentheses can be used to clearly denote the body but can be omitted
if the grouping is clear enough. Thus we can also write: λx. λy. x. We can read this “active”
behaviour of True as: given object x and object y, True chooses, or returns, x. Finally: True is
just the name of the λ term appearing on the right hand side of Eq.(1) that captures the behaviour
of the True value.

If True is to yield the first of the two objects, then False should yield the second. Hence, the λ
term for False is constructed as:

False ≡ λx. λy. y (2)

We can read this “active” behaviour of False as: given object x and object y, False must choose
y (since True has been constructed to choose x).

We use β rule to apply True to two given objects, say “apple” and “orange”, as follows:

((True apple) orange) ≡ (((λx. (λy. x)) apple) orange)
≡ ((λy. apple) orange)
≡ apple (3)

5



Similarly False yields:

((False apple) orange) ≡ (((λx. (λy. y)) apple) orange)
≡ ((λy. y) orange)
≡ orange (4)

Is the object “apple” a λ term ? Yes, it is. It is just a name of an object – a variable. The object
“orange” is also a λ term. In fact any other type of λ term can occur in place of any or both of
these (illustrative) λ terms.

We can now construct a more useful λ term: the conditional expression. An expression yields a
value. A conditional expression λ term yields the value of one of two λ terms depending on the
boolean value of a condition λ term. A conditional expression thus needs to be given three λ terms:
the condition term, say b, and the two other λ terms, say m and n, between which a selection is to
be made. Observing that b will either be the λ term True or the term False, we can construct the
conditional expression by simply applying b to m and n. Naming the conditional expression as If,
we write it as:

If ≡ λb. λm. λn.((b m) n) (5)

The body of the λ term in Eq.(5) is inspired from the Eqs.(3, 4). Languages like C have a condi-
tional statement, the if-then-else statement. This statement only changes the control flow of the
computation and does not necessarily yield a value. In contrast, the conditional expression in Eq.(5)
yields a value. It is in no way concerned about control flow. In fact, it is concerned only with the
question of which one (and only one) of the two expressions to evaluate next. It corresponds to the
? : ternary operator in C.

Given the construction of the conditional expression, the boolean operators are now easily con-
structed. The logical negation operator, Not, is easily constructed as:

Not ≡ λx. (If x False True) (6)

where If, True and False are λ terms as constructed earlier. The thought process behind the
construction of Eq.(6) is quite simple: if x has the value True, then the conditional expression in
Eq.(6) should yield False and vice versa.

It is instructive to construct the λ terms for the other boolean operations like And etc.

3.2 Natural Numbers

We know that the natural numbers 0, 1, 2, . . . are also called as “counting” numbers. To view them
from the λ calculus perspective, we again need to change over from a rather passive view of numbers
as “data” to an active view of numbers. This is possible by focusing on the counting activity that
numbers are used for. Imagine counting a few chairs by pointing a finger sequentially at each one. A
“finger” is applied to every object that satisfies the criterion of being a “chair”. A counting number
is simply the number of times the application of a one object, the finger in this concrete case, to
another object, the chair, is successfully carried out. Now observe that the object being applied

6



need not be something like the finger. It can be another active process too. For instance, imagine
the process that doubles up the object it is given. We can apply the “double-up” activity to a
chair and get two chairs. If we apply the “double-up” activity to each of N chairs, then we get
2N chairs in all. However, the activity of doubling up has been applied only N times! Thus the
counting numbers are simply the number of times one object, say f , is applied to another, say x. If
such an application cannot be done, then the number is “0”. We can use this insight to construct
the λ expressions for natural numbers as follows (we “name” the numbers as usual):

0 ≡ λf. λx. x

1 ≡ λf. λx. (f x)
2 ≡ λf. λx. (f (f x))
3 ≡ λf. λx. (f (f (f x)))

. . .

n ≡ λf. λx. (f . . . (f x) . . .) (7)

Eq.(7) captures the idea that the counting numbers are simply the number of applications of object
f to object x. The above way of looking at numbers was proposed by Alonzo Church and hence
these are also called as Church numerals.

We observe that a number in the λ calculus sense is simply the number of applications of some
“stuff”, f , to another “stuff”, x. While we have used the act of “point a finger” as the “stuff”,
the f can be any reasonable process. For instance, f can be the process of doubling. Since bound
variables can be renamed systematically – and that is what the α conversion rule is about – we can
write: n ≡ λf. λx. (f . . . (f x) . . .) ≡ λg. λy. (g . . . (g y) . . .). The idea that a natural number n
is simply n applications of some (λ term) f to some (λ term) x can be expressed as the following
application λ term:

(λm.λg.λy. (m g y)) n) ≡ λg. λy. (n g y) − application, β rule
≡ λg. λy. ((λf. λx. (f . . . (f︸ ︷︷ ︸

n times

x) . . .)) g y) − definition of n

≡ λg. λy. ((λx. (g . . . (g︸ ︷︷ ︸
n times

x) . . .)) y) − application, β rule

≡ λg. λy. (g . . . (g︸ ︷︷ ︸
n times

y) . . .) − application, β rule

≡ λf. λx. (f . . . (f︸ ︷︷ ︸
n times

x) . . .) − renaming, α rule

≡ n − definition of n
(8)

This observation can motivate the definition of the successor function called succ. It takes a natural
number n and returns the next natural number (n+ 1). The λ abstraction for the succ function can
be written as:

succ : ≡ λn. λg. λy. ((n g) (g y)) (9)

Note that g and y are bound variables and hence can be renamed systematically. To see the succ

7



definition indeed behaves as expected, let us calculate “(succ 1)”.

(succ 1) ≡ (λn. λg. λy. ((n g) (g y))) 1)
≡ (λg. λy. ((1 g) (g y)))
≡ (λg. λy. (((λf. λx. (f x)) g) (g y)))
≡ (λg. λy. ((λx. (g x)) (g y)))
≡ (λg. λy. (g (g y)))
≡ (λf. λx. (f (f x))) − by α conversion. Replace g by f and y by x
≡ 2 (10)

The intuition behind Church numerals can be extended to describe the addition operation. Addition
of Church numeralsm and n is simply the Church number obtained when n applications are continued
after the first m applications. Using the ideas in the definition of the succ function, we write the
definition of addition as:

add : ≡ λm. λn. λf. λx. ((m f) (n f x)) (11)

The “add” λ term in Eq.(11) above captures the essential behaviour of the addition operation, “+”,
over natural numbers.

The other operations like subtraction and recursion can be defined but need more conceptual frame-
work to proceed. We will skip them but mention that the two interesting concepts needed are the
predecessor function that yields the previous natural number of the given natural number, and a
peculiar λ expression Y that has the property: (Y E) = (E (Y E)). The Y is called the fixed point
operator and is needed to capture recursion.

3.3 Pairs

An ordered pair of two objects o1 and o2 is denoted as (o1 . o2) and is just some “gluing” of the
objects such that the first of the pair is the object o1 and the second is the object o2. We wish
to “glue” two objects together so that we can process them together. The pair (name, age) that
captures the name of a person and his/her age together suggests the need to treat the composite
object as a single entity. In programming, pairs serve to create structures of objects. The objects
can be any λ terms. How do we construct the λ term for a pair ?

Given that the pairing process simply prepares the two objects for eventual processing by some other
object, we can propose the following definition for a pair (m . n) of two objects m and n:

pair : (m . n) ≡ λm. λn. λf. ((f m) n) (12)

If we wish to extract the first of the pair, then we must arrange the λ expression so that we can
select the first object. We already know how to select the first of two given objects. We must have
the “True” λ expression from Eq.(1) take the place of the “f” in 12. Since this must occur after β

8



conversion, the selection activity must be presented as the “eventual” process that acts on the given
pair. Thus the definition of first operator that yields the first of the pair p can be written as:

first : ≡ λp.(p True). (13)

Naturally, the definition of the second operator that yields the second of the pair p can be written
as:

second : ≡ λp.(p False). (14)

If we wish to pair up two objects, 1 and 2, to obtain the pair “(1 . 2)” then

(1 . 2) ≡ ((pair 1) 2)
≡ (((λm. λn. λf. ((f m) n)) 1) 2)
≡ ((λn. λf. ((f 1) n)) 2)
≡ (λf. ((f 1) 2)) (15)

The RHS of the last line of Eq.(15) is the final λ term that denotes the pair (1 . 2). Note that it
expects that some f is to be given later. We can now see how the definition of first allows us to
extract the first of the pair (1 . 2).

(first (1 . 2)) ≡ ((λp.(p True)) (1 . 2))
≡ ((1 . 2) True)
≡ ((λf. ((f 1) 2)) True)
≡ ((True 1) 2)
≡ (((λx. λy. x) 1) 2)
≡ ((λy. 1) 2)
≡ 1 (16)

3.4 Some Observations

We have seen the λ calculus in action in the above sections. We can now distill some interesting
concepts that emerge although our view has been quite limited.

• The syntax of the λ calculus specifies what are λ terms and how they are arranged. The paren-
theses in the syntax for function application are important. The first term of an application
is the “operator” – the entity that acts, and the second term is the “operand”, the entity that
is acted upon by. Thus the syntax is a simple prefix notation: operator followed by operands
– always.

• The conversion rules, of which we have mainly seen the β rule and a little of the α rule, specify
the operational effects of the syntax.

• The results of applying the conversion rules are other λ terms. Although we have not stated
explicitly, the Church-Rosser theorem assures us that we can keep on applying the conversions

9



in any order until we reach a unique point, if it exists, where no more conversions are possible.
Such a λ term which cannot be converted further is said to be in normal form.

• There is no real need to distinguish between passive data and active processes as we have
seen while constructing the λ terms for various data values! This property is called first
classness and is in stark contrast to the division between data and code in our usual languages.
First classness allows us to treat data and processes on the same footing. Thus just like
data, processes can be passed as arguments to other processes, or can be returned from other
processes, or can be a part of some other structures. In fact, an operating system kernel is
a program that must treat (user) processes passively as “data” so that it can perform usual
operations like scheduling etc. on them. Further, there is no need to have separate concepts of
“data structures” and “code structures”. Come to think of it such a division in usual languages
is actually artificial. The memory of a computer only has integers in binary representation
and there is no mechanism to distinguish if a certain value in memory is a “data” or a “code”
(i.e. a CPU instruction) unless the values of the instruction pointer and data pointer in the
CPU are given.

• The β rule is just text substitution. The λ calculus views computation through substitutions.
An interesting effect of text substitution and application is that one can construct “partial
evaluations”. Thus a function, i.e. an abstraction, that expects two arguments can be given
only one argument and conversion rules be applied to obtain the normal form. The function is
said to have been partially evaluated and results in a λ term that is ready for further application
to another λ term that will be the argument not supplied before. This is a powerful ability
and has no analogue in the usual languages. We will see some glimpses of the power of this
ability.

For example, normally the addition operation requires two numbers as its arguments. However,
the “add” λ term in 11 can do useful partial evaluation when given only one argument! Suppose
we give only one argument with value “1” to the “add” λ term. Then, observing that “1” is
the name of the λ term λg. λh. (g h) – the Church numeral 1 with f renamed as g and x
renamed as h, we have:

(add 1) ≡ ((λm. λn. λf. λx. ((m f) (n f x))) 1)
〈Replace every occurrence of m by 1〉

≡ (λn. λf. λx. ((1 f) (n f x)))
〈Replace 1 by its λ term〉

≡ (λn. λf. λx. ((λg. λh. (g h) f) (n f x)))
≡ (λn. λf. λx. ((λh. (f h)) (n f x)))
≡ (λn. λf. λx. (f (n f x))︸ ︷︷ ︸

one more application of f

) (17)

The last term in 17 has finished applying the λ term for the church number “1” and is “waiting”
for the next argument n of the addition operation. We now have an operator which would
add 1 to any number given to it. Most modern CPUs have an instruction, inc(rement), that
adds 1 to its argument. 17 is the λ term for this instruction, and we now understand it as a
simple effect of partial evaluation of addition when given only one argument. This is called

10



currying. Not only are partial evaluations possible, but they result in a remarkable ability to
create processes “on the fly” in practical programming.

Finally, we already know the operation in 17 as succ – see 9! But these two expressions look
very different. They are not! Try (succ 1) and ((add 1) 1).

• The λ calculus tells us that we need the ability to bind a name to a value, i.e. just associate
the name to a λ term. Once bound, the value does not have to change. This is remarkable.
Our usual languages do such things differently. They use an operation called assignment. An
assignment operation identifies a location – an address of a store – into which values may be
stored, and associates a name with the location and not the value! A name is no longer bound
to a value. The value can be changed without affecting the association between the name
and the address. We say that the value can be mutated to another value by overwriting the
previous value at the location associated with the name. The assignment operation corresponds
to the read or write operations that can be performed on a cell of the tape of a Turing
machine. Practical programming using usual languages based on the Turing machine view
use the assignment operation intensively. However, the λ calculus shows that there is no need
of the assignment operation for computation purposes. Instead, just binding is enough when
supported by the abilities to yield λ terms through abstraction and application.

• Programming languages can almost directly be created by creating a computer representable
syntax of the λ calculus. For instance we might use the syntax “lambda” on a computer for
“λ”!

• Technically, the λ calculus sketched above is an inconsistent theory. Extensions like the typed
λ calculus have been developed and have advanced the art to very fine levels. For instance,
languages like Haskell are able to actually deduce the types of objects that occur in an ex-
pression, and the programmer is not required to specify the types! In practice, one uses such
extended versions. For instance, the untyped calculus above is augmented with predefined
data types (like booleans or numbers) and operations.

We are now in a position to actually see the λ calculus in action. We do this by using the program-
ming language Scheme which is almost the λ calculus adapted for working on our computer.

4 Programming and the λ Calculus

Having touched the concept of an algorithm, the formal structure of the λ calculus and having had
a glimpse of how the λ calculus can be used, we can now explore the programming style that it gives
rise to.

The language Scheme, a dialect of Lisp, is almost a direct computer representation of the λ calculus.
In Scheme, a “name” is bound to a “value” using the “define” construct. To represent λ on Scheme is al-

most a direct
computer rep-
resentation of
the λ calculus.

a computer the word “lambda” is used. Scheme calls processes as procedures. Since data and
procedures are first class in Scheme, the “define” syntax can be used to associate names with
procedures or values. Thus:

11



• The Scheme expression (define pi 3.14159) associates the name pi with the value 3.14159.
This is an example of the first syntax rule of the λ calculus: the ability to name objects.

• The Scheme expression (lambda (x) (* x x)) corresponds to the λ calculus syntax of func-
tion abstraction: λx. (∗ x x). It is a process that when given an object multiplies it by itself.
Note that function abstraction merely captures the processing to be done, and does not give
a name to the process.

• We can use the ability to name objects and write the Scheme expression: (define square
(lambda (x) (* x x))) to associate the name “square” with the process of taking an object
and multiplying it by itself. It is interesting to see the uniformity of syntax that emerges from
first classness: a “value” 3.14159 or a process λx. (∗ x x) can be associated with their names
using just one construct – the define. However, Scheme also provides an alternate syntax for
defining procedures in a more conventional way. The above procedure can also be written in
Scheme as: (define (square x) (* x x)). Finally, note that the body of the abstraction,
(* x x), can be any other λ term, however complex.

• To use the squaring procedure, we need to apply it to some object. The Scheme expression:
(square pi) applies the λ term (bound to the name) square to the λ term (bound to the
name) pi. To evaluate this expression, one conceptually performs β conversion. Thus square
and pi are substituted by their bindings. This gives: ((lambda (x) (* x x)) 3.14159).
This can be further reduced to: (* 3.14159 3.14159). Applying the “*” operation to its
arguments yields: 9.869588 which is the answer since it cannot be converted further.

The basic correspondence between the formal sketch of the λ calculus and a practical programming
language, Scheme is now in place. We will now finish this section with a set of Scheme programs
that illustrate some of the observations in section 3.4 as well as some other exciting and practical
concepts.

4.1 Illustrative Scheme Programs

• Basic Recursion: Consider the classic factorial function defined recursively as:

∀n ∈ N, n! = 1, n = 0
= n× (n− 1)!, otherwise. (18)

We can write a Scheme procedure as:

(define fact
(lambda (n)

(if (= n 0) ; base case check
1 ; base case value
(* n (fact (- n 1)))))) ; recursion step

Try (fact 5) to obtain the answer 120. Note that the “if” is the conditional expression as
noted in Eq.(5). The expression (= n 0) in prefix form is more familiar in its infix form: (n
= 0). The example also illustrates some practical program writing styles.

12



• Procedures as Arguments: Compare the expressions:
∑10

i=1 i
2 and

∑10
i=1 i

3. They sum
the squares and cubes of integers between 1 and 10. In general the summation notation,

∑...
...

performs addition of values of any function, like i2 or i3, given to it. There is a clear separation
between the repeated operation, addition, and the values to operate on as generated by some
function, say i2 or i3. In languages like C it is not easy to capture this separation. That is, it
is not easy to write a C function that takes another function as an argument and uses it for
evaluation. Here is a Scheme procedure to perform summation on arbitrary functions that it
receives as argument.

(define summation
(lambda (start end function)

(if (> start end)
0
(+ (function start)

(summation (+ start 1) end function)))))

Try (summation 1 10 square) to find the sum of the squares of the first ten numbers. Also
try (summation 1 10 (lambda (x) (* x x x))) to sum the cubes of the first ten numbers.

• The “Pair” and “List”: In Scheme the “pair”, “first” and “second” λ terms defined by
Eqs.(12), (13) and (14) are respectively called as: cons, car and cdr (pronounced “could-er”).
Additionally, a special object called nil and written as ’() is introduced to define lists. A list
is a particular kind of pairing operation that is recursively defined as:

list := nil | (pair object list) (19)

where we have used the BNF notation for compactness. Reading “:=” as: “is defined as”,
we can read Eq.(19) as “A list is defined as either nil or the pair of an object and another
list.”. Thus the pair given by: (cons square ’()) yields (square . ’()). This is nor-
mally written as just: (square) and denotes a list with one element square. Recall that
square is the name of the procedure that squares. We can bind this list to a name: (define
list-of-procedures (cons square ’())). Also: (car list-of-procedures) yields squ-
are, and (cdr list-of-procedures) yields ’(). Using the recursive definition of lists in
Eq.(19), we can add another procedure cube as: (cons cube list-of-procedures). This list
in pair notation is: (cube . (square . ’())), and is normally written as (cube square).
The operation of creating lists is often used and hence there is a short hand in Scheme: (list
cube square) → (cube square).

Now here is another example of first classness at work. Observe that the list structure of the
expression (cube square) is the same list structure of the expression (define pi 3.14159)!
For instance: (car ’(define pi 3.14159)) yields define! I used ‘’’ (single quote) character
to tell Scheme to not to evaluate the list as we want to treat it as data. Thus Scheme
expressions that we see as “code” are themselves lists! Hence we can write Scheme procedures
that construct code by composing lists in desired ways. In other words, we can write Scheme
procedures that can manipulate other procedures by treating them as “data”, i.e. just a list of
some objects! We now understand why this way of writing programs is called “LISt Processing”
and the language is called LISP. Scheme is a dialect of LISP.

13



5 Closing Remarks

The languages based on the λ calculus promote a view of programming where λ terms called operators
are applied on other λ terms called operands to yield λ terms called return values. This exactly
corresponds to our usual idea of a mathematical function. Mathematical functions simply take values
as arguments and return values as “answers”. This style of programming that emerges is therefore
called functional programming. It is a distinct style of programming and requires a mental paradigm
shift compared to our usual programming in C/Fortran etc. I have tried to convey this paradigm
shift through a discussion of the intuitive connections between the formal system of the λ calculus
and a programming language from the LISP family, Scheme.

Functional programming is far more extensive than described here. My aim has been to aid the
mental shift required for functional programming (FP). We have barely seen the tip of the iceberg
in this article and I hope that even this glimpse has shown something more exciting than usual
languages. Far more exciting concepts and ideas proliferate the FP world. Some of the ideas that
are considered “novel” and “innovative” in the present maturity of usual languages, message passing
in C++ for instance, have already been investigated in the FP world. Old FP concepts like tail
recursion are beginning their entry in this world of usual languages. FP tends to look at programs
at a much more logical level than most popular languages. As a result most FP programs are very
compact as compared to equivalent programs in usual languages.

In this article I have addressed one reason about functional programming that it is difficult to
understand and teach. I found that exposing the intuition behind the λ calculus makes it much
more accessible to students. The λ calculus and the functional programming paradigm based on it
may not be used as much in industry as languages like C or C++. The probability that one may use
a FP language in his or her professional life is indeed very low. However, the perspectives that FP
opens up has a deep impact on the way programs in usual languages are designed and developed.
Personally, this benefit of FP alone suffices to teach and learn these concepts.

Further Reading

1. Madhavan Mukund, A Taste of Functional Programming – I, Resonance, 12 (8), 27, August
2007.

2. Madhavan Mukund, A Taste of Functional Programming – II, Resonance, 12 (9), 40, Septem-
ber 2007.

3. Harold Abelson, Gerald Sussman with Julie Sussman, Structure and Interpretation of Com-
puter Programs. http://mitpress.mit.edu/sicp.

4. Kamal Lodhaya, Algorithms as Machines, Resonance, 14 (4), 367, April 2009.

5. Wikipedia, http://en.wikipedia.org/wiki/Lambda calculus

14



1. Place the numbers one below the other such that their least significant digits are aligned.

2. Start from the least significant digits and proceed towards the most significant digit.

3. Add the digits at the current place along with any carry-forward digit.

4. Write the least significant digit of the sum just below the digits being added.

5. If a carry occurs then place it in the next higher significant place.

6. Move to the next significant place.

7. Continue step 3 until no more digits are left.

Figure 1: Algorithm to Add Two Decimal Numbers.

A λ term is defined as:

1. A variable, denoted by x, is a λ term.

2. A function abstraction of a function f(x), denoted by λx.f(x), is a λ term. f(x) is called the
body of the abstraction.

3. An application of a λ term M to another λ term N , denoted by (M N), is a λ term.

Figure 2: The syntax of the λ calculus.

15


