Notes on types

Author: Amitabha Sanyal

Last updated: 28th September 2001

Abstract

In this report we discuss the basic issues related to type checking and type inferencing.
After introducing the framework for presenting type systems, we prsent type systems for two
languages A — Curry and Milner’s languge (A — Curry + let). We then present a type
inferencing algorithm for the second language. This algorithm forms the core of all type
inferencing algorithms based on the Hindley-Milner type system.

1 Introduction

To see the place of type systems in programming languages, look at the diagram given below:

. Unchecked
(machine language, untyped lambda cal culus)

Dynamic

rong

~——— Dynamic and not strong
(Perl,Awk)

Dynamic and strong
(Lisp)
Static and not strong
(C,Pascal)

Static and strong Strong and (static + dynamic
(ML, Haskell) g(AdaSava) tynamic)

Every programming language definition includes a list of forbidden errors. Examples of
forbidden errors are adding a pair of booleans and accessing an array element beyond its
bound.

A programming Inguage may take one of the following stands with respect to forbidden
errors.

1.

It may check for and prevent all forbidden errors. Then it is called a strongly typed
language. Further, it may do so statically (at compile time like ML and Haskell), dy-
namically (at runtime like LISP), or both statically and dynamically (as in Ada and
Java).

. It may check for only a proper subset of forbidden errors. This is the case with languages

like C and Pascal. Both these languages consider out-of-bounds array access as a forbid-
den error. However, both these languages are statically checked and ignore out-of-bounds
accesses that occur at run time.

. Finally there are languages like untyped lambda calculus which have no forbidden errors

and consequently do not do any checking.

Type systems are concerned with languages which perform static checking. The algorithm

doing so is called a typechecker. A typechecker is based on certain rules given by a type system.

2

Type Systems

So what does a type system consist of?

1.

2.
3.

1.

A set of terms (or programs, we shall use the two words interchangeably) which are to
be typed.

A set of type expressions to describe the types of the above terms.

Assignment or type rules which enable us to make judgements such as: a program M has
the type o.

With a type system in place, one can define two problems:

Prove that a program M has the type o under the type system. This is the type checking
problem.

. Find out a type o for the program M under the type system. This is the type inferencing

problem.

In general, the second problem, is harder than the first. Now let us look at the three

components of a type system in turns.

2.1 Terms

This is essentially the programming language whose programs we want to type check. Even-

tually we want to type a reasonable subset of Haskell. But, to start with, we shall attempt to

type A-terms augmented with constants. Thus our terms are given by the following grammar:

M — wvar | constant | \var.M | My M,
We shall use z, y and z to range over variables (var) and ¢ to range over constants. M

and N shall range over terms. This language is called A — Curry.

2.2 Types

The language of types is given by the following grammar:

T=V | C|T—-T | xTT/| (T) (monomorphic types)
=T |VV.EX (polymorphic types)

This says that a monomorphic type is either a type variable (V'), a constant type C, a
function type T'— T or a type constructor x (like List) applied to type expressions. Whereas
a polymorphic type is either a monomorphic type or a type with quantified type variables.
Note that the quantifiers appear at the outermost level of a type expression.

We shall use «, 8 to range over type variables, 7 to range over monomorphic types and o
to range over polymorphic types. Further, we shall assume that — associates to the right.

Let us take some examples. Examples of monomorphic types are Int, o, a — Int and
a — (. Examples of polymorphic types which are not monomorphic are Va.a, Ya.ao — Int
and YaVp.a — B.

What does a type like Va.co — Int really mean? If f has this type, then it can be used in a
context which requires a value of the type Int — Int or Bool — Int or (List Int) — Int. We
can summarize this by saying that f can be used in context which requires the type o — Int.

The difference between a monomorphic type like a — Int and a polymorphic type like
Ya.a — Int is often a source of confusion. Read o« — Int as the type of a function from some
specific type a (whose details are not important) to Int. Whereas Va.ao — Int is the type of
functions which can take values of any concrete type as argument and return a Int as result.
Va.ao — Int can be ”instantiated” to a monomorphic type, say Int — Int, whereas a — Int
cannot. Also, a type like — Int is used during the process of reasoning about types and is
not the final type of any term. As an analogy, you might also like to think of the difference
between the terms Ax.z + 2 and = + 2.

The use of type expressions is illustrated by type checking a term such as foldr Cons [][1,2, 3].
First foldr has the polymorphic type VaVb. (¢ — b — b) — b — List a — b. Instantiating
a to Int and b to List Int, we see that foldr can work in the context (Int — (List Int) —
(List Int)) — (List Int) — List Int — (List Int). Similarly, Cons has the polymorhic
type Ya.a — (List a) — (List a), which can work in the context of Int — (List Int) —
(List Int). Finally [] has the type Va. List a, which can work in the context of List Int. So
foldr Cons []]1,2,3] is a proper application.

As another example, consider foldr Cons. In this case, we instantiate foldr to (a —
(List a) — (List a)) — (List a) — (List a) — (List a) and Cons to (a — (List a) — (List a).
Therefore (foldr Cons) has the monomorphic type (List a) — (List a) — (List a). We can
also say that since no assumption was made regarding the type of a, (foldr Cons) also has
the polymorphic type Va.(List a) — (List a) — (List a)

Also note that the type variables in a Haskell type expression are implicitly quantified.
Thus the type of foldr, expressed in Haskell as (¢ — b — b) — b — List a — b, is in our
notation, VaVvb. (a — b — b) — b — List a — b.

2.3 Type rules

Type rules allow us to make judgment of the form I' - M :: 0. Read this as — from the set of
assumptions I' it can be judged that M is of the type o. An assumption is of the form z :: o
or ¢ :: 0, and is to be read as — the variable z (or constant c) is of the type o. Thus the judgment

{z:a}bFAyx VB0 — «

says that from the set containing the sole assumption z :: o, one can judge that A\y.x has the
type V3.8 — a.

Why do we need assumptions? Assumptions are akin to symbol tables used by compilers.
For example, a compiler extracts information from the declaration part of a program, and puts
it in the symbol table. Subsequently it uses the symbol table to process the imperative part.
Similarly, here we use assumptions to collect information about the ’lambdas’ and use this
information to process the ’bodies’. As an example, to show that

{} FAXzdy.z = VaVB.a = — «

we would have show as an intermediate step that, assuming that x has the type a, Ay.x has
the type 8 — «. This is represented as:

{zalFAyx:f—a

Another reason for having the assumption set is to collect assumptions regarding constants,
built-in functions and library functions. A typical type judgment in such a situation might be:

{+ = Int = Int — Int,1 :: Int} - Az.x + 1 2 Int — Int

If J; are judgments, then a type rule has one of two possible forms:
J

— This is read as the judgement J can be inferred unconditionally.

J1 Jo JIn
J

Which is read as: from the judgments J;, we can infer the judgment J.
We shall now have a look at the type rules of the language discussed earlier.

3 Type rules for A - Curry

Fr'v{z:ottrzuo (VAR)

The first rule (named VAR) says that if the assumption {x :: o} is already present in the
assumption set, then we can have this fact as conclusion. We have similarly,

Fr'u{cuo}lkcuo (Con)

The next rule that we are about to introduce, would allow us to make inferences of the
form

I'kz:Voo— «
'tax::Int — Int

The type Int — Int is called a generic instance of Va.ce — «. Intuitively, o’ is a generic
instance of o if o can be used in any context in which ¢’ can be used. In the lattice diagram

shown below, o < ¢’ iff ¢’ is a generic instance of o.

Int —>Int a—>Int

Yo.0->Int V-a.a->a YaBfy.a->pB->y

Bool a V-ap.o—>f3

\\/

Ya.a

Now for the formal definition of generic instances. First a substitution is a pair consisting
of a type variable and a monomorphic type expression, and is denoted by a/7. A substitution
list S is a set of such substitutions {a; /71 ..., /7n}. A substitution list S applied on a type
expression o, denoted by S o involves simultaneous substitution of the variables ay ... ay, if
they occur free in o, by the corresponding type expressions 71 ... 7,.

Let 0 =Vai...apn.7r and 0/ =V ...B3,.7". Then ¢’ is a generic instance of o, iff there is
a substitution S acting only on {«; ... a;,} such that 7/ = S(7) and no §; is free in o.

We are now in a position to give the next rule:

'FM:o o >0
'EM:o

(INsT)

Clearly, the restriction that no §; is free in o is needed, else we would have absurdities like
a — Int <Va.a — Int.

To illustrate the next rule, we shall consider a proof of YaVb.(a — b)(a + b) = a® — b?. To
prove this, we consider two arbitrary variables a and b, where arbitrary means that we do
not ascribe any particular properties to these variables. Now we do the usual calculations:

(a —b)(a+0b)
a? + ab — ba — b?

a’ — b?

We then say that since nothing was assumed about a and b, we have in effect proved that
Ya¥b.(a — b)(a +b) = a? — b?. In a similar vein, our next rule allows us to add quantifiers to a
judged type.

If a type variable « occurs free within a type expression o, we denote it as o € FV (o).
Further « € FV(T'), if & € FV (o) for some o occurring in I'.

Now for the next rule, which is called GEN, standing for generalization:

'-M:o a¢ FV(T)
'-M :Vao

(GEN)

Our final two rules relate to abstraction and application and are called M-ABS and M-APP.
The prefix M stands for monomorphic. Recall that 7 ranges over monomorphic types and o
ranges over polymorphic types.

'EM:m -7 'EN:=n
I'FMN :m

(M-App)

FxaumbEM:m
I'EXe M1 — 1

(M-ABs)

We shall now look at a series of examples. In each example, the judgment on a particular
line follows from the judgment on the next line using the rule specified between the two lines.

Example 1:

{} FAz.z : Va.a — «
GEN
{}FXzz:a—a
M-ABS
{zalbz:a

VAR

Example 2:

{} FAzyz.z 2(y 2) = Vapy.(a = =) > (a—=) > a—7y
GEN (3 times)

{}FXzyzz z(yz) s (a—= B =) > (a—=p) 2a—y
M-ABS (3 times)
{zna—=pF—=vyra—=Bzualtbzzyz) oy

M-APP
{za—-PFovyia—f,zuatbzz:f—yand
{zra—=pfovyna—fzualb(yz):p

We shall consider the first conjunct only:

M-APP
{za=>pFovyna—pzratbza— f—yand
{zra—=pfovyna—pfzualbzap

VAR (once for each conjunct)

Example 3:

Az.xz x cannot be typed. The reason is: assume that the type of the second occurrence
of z is . Then the type of the first occurrence of = is @ — . Since the types of the two
occurrences of x must be the same, the type of the second occurrence now is @ — 8 and that
of the first is « — — v and so on.

Example 4:

{} F Az.z :: Int — Int
M-ABS

{z ::Int} -z Int
VAR

The point of the above example is to show that the type system allows more than one type
judgments Va.ao — « and Int — Int for the same term Az.z. However, it is desirable that a
type-inferencing algorithm should return a unique type (the principal type) for each term.

Example 4:

In this example we shall try to type the term A\fzy.(f =, f y). Remember that (f z, f y) is
actually Pair (f z) (f y). We shall use the notation (,) both for the type constructor T'uple
as well as the data constructor Pair. We shall try to show the judgment

{(,) = VaBa— B (@ B)} F Mfzy.(f 3, f y) : Yaf.(a = B) = a — a — (8, 8)

GEN

{(,) =Vapa— B — (B} F May.(f o, fy) s (@) > a— a— (8,6)

M-ABS

{(,)=Vapa— B (ap).fra—Bozayzalb(fo.fy) (6.0

M-APP

{(,)5VaBa =B (@B)f=a—fazaysatc(,)(fs):8— (8,6) and

{(,):Vafa—=B—=(,p),f ra—=LBrxayalb(fy) =0

Once again we shall prove the first conjunct, which is more interesting.

M-APP

{(,)2Vapa—p—=(,B),fra—=Brrayatt-(,):8—6—(6,F) and

{(,)=Vapa—=p—=(,pB),fra—=Brayatb-(fz):p

the first conjunct is proved by:

{(,) = VaBa—> B (@B),fsasBasaysalh(,):B— 8 (80)

INST

{(,):Vafa—=B—=(a,p),f ra—=Bzxayalb(,):Vaba— 8= (o)

VAR

and the second conjunct by M-APP

{(,)=:Vafa—=B—=(,B),f ia—=Bxay:albk fra— fand
{(,):Vafa—=B—=(,p),f ta—=Brzay:albFz:a

Both of which are proved by VAR.

It can be figured out that VafS.(a — B) = a — a — (5, 5) is the most general type of the
term Afzy.(f x,f y). In this, the types of the arguments x and y are forced to be identical.
This makes a seemingly sensible term like

AMfzy.(f =, f v)) (A\z.x) 3 True

ill-typed under this type system!

Notice carefully the source of the problem. This type system forces one to judge the type of
a lambda body from monomorphic type assumptions regarding lambda bound variables. Thus
all occurrence of the lambda variable in the body are forced to have the same monomorphic
type. This is illustrated by the boxed step. The type of (fz, fy) is being judged from the
assumption f :: @« — . Thus both z and y are forced to have the same type .

To fix this problem, we first have to change the language of types

T=V|C|T—T (monomorphic types)
=T |VV.E|X =X (polymorphic types)

Notice that we now permit quantifiers at inner levels of a type expression. Thus V37y.(Va.ao —
a) = B = v — (B,7) is now a valid type expression. We also introduce the following two
rules instead of M-ABS and M-APP.

I'EM:0oy — o9 I'EN:oy

(P-App)
I'EM N :: oy

xaogFM:: o9

(P-ABS)
' Xe.M :: 01 — 09

Example 5:

Let us now show the following type judgment:

{(,) aVaBa— = (a,B)} B M zy.(f z, fy) = VBy.(Voea = a) = B = v = (B,7)
GEN (3 times) followed by P-ABS (3 times) gives

{(,) uVaBa— B (@B),f: Vaa— o)z Byt (fa,fy):(B7)]
P-APP (2 times)

{(,)=Vafa—=B—=(,B),f: Vaoa—a)z:By=vFE(,)=8—=v— (8,7) and
{(,)=Vap.a—B—= (a,p),f:: Voo — a),z:: B,y =y} E faz::pand
{(,)=Vafa—=B—=(a,p),f: Vaa—a)z:fyuvtEfyuy

Notice that if the judgment goes through, the f x and f y would have different types. We
just show that f x :: 8. This follows from

{(,)=Vap.a—B—=(a,p),f:: Voo — a)z: B,y vyt Efupf— Fand

{(,)=Vapa— B —=(a,p),f: Vea—a)z:pyzytbz:p

The first conjunct is got by an INST followed by a VAR. The second conjunct directly by
a VAR. Observe, once again, in the boxed step of this derivation, that the type of (fz, fy) is
being judged from a polymorphic assumption f :: VaV3. a — 8 regarding the lambda variable

f.
Exercise:

1. Complete the above judgment and make sure that you understand it.

2. Now derive the following judgment:
{(,)=Vap.a— B — (a,0),3 :: Int,True :: Bool} b (Afzy.(f =, f y)) (Az.z) 3 True :
(Int, Bool)

So it would seem that things would be fine if had P-ABS and P-APP instead of M-ABS and
M-APP. However, based on the reference (Kfoury, 1989), Barendregt reports that the problem
of designing an algorithm based on the above type system is open.

4 Milner’s language — A\ — Curry + let

Though the language discussed so far allows certain functions to be judged polymorphic, the
M-APP and M-ABS rules inhibit usage of this polymorphism. To get around this problem,
we introduce the let and the letrec expressions.

4.1 let and letrec

The let expression introduces a local environment. The expression

let
Ir1 = €1
m e

is evaluated as follows: First the expression e; is evaluated in the environment surrounding
the let expression. The expression e is then evaluated in a modified environment in which the
variable z is bound to this value. Thus assuming the value of z in the surrounding context
to be 5, the the value of

let
r=z+1
m 2*x

is 12. The let expression can also be generalized to

let

1 = €1

To = €2

Tp = €p
imn e.

This is equivalent to:

let
T =e€
in let
o = €2
in let
Tn = €n
in e.

We abbreviate the general let as:
let

On the other hand the expression

letrec
r=z+1
m2xx

yields an undefined value because the z on the left and right hand side of the = represents
the same z, and there is no (integer) value of z satisfying £ = x + 1. letrec are used for
recursive definitions such as

letrec
fact = dn.if (n ==0) then 1 else fact(n — 1)
n fact b

Note that there is no let in the above sense in Haskell. The Haskell let is actually a letrec.
We shall now present the rule for a let expression and illustrate it by an example.

I'y="T Ly =T 1 U{z; 05} i1 beog I'Feto

I'bletz; =e;ine::o

(LET)

Let us illustrate the rule with the following judgment:
{3 :: Int,True :: Bool} \-let id = Ax.z in (id 3,id True) :: (Int, Bool)

10

LET
{3 :: Int,True :: Bool} - \z.x :: Va.aw — o and
{3 :: Int,True :: Bool,id :: Va.a — a} = (id 3,id True) :: (Int, Bool)

Complete the rest of the proof. Also notice that the parametric polymorphism of id is
actually being used. Now the rule for letrec.

Fu{z;, =n}le nm Fru{z;:oitkFexo o, =Vaq ...o,T; a; ¢ FV(T)

I'letrecz; =ejine::o

(LETREC)

Read this rule as follows: Assuming a monomorphic type 7; for z;, suppose we can judge
that e; too has the same type 7;. Further, assuming that x; has the polymorphic type o,
where o; is an appropriate generalization of 7;, suppose we can show that e has the type o.
Then the entire [etrec expression too has the type o.

5 An Algorithm for type inferencing

We shall now describe a type inferencing algorithm for Milner’s language. Recall that the type
inference problem is: Given a program M, find a type o such that M :: o. To explain the
type inferencing algorithm, we first need to explain unification. We shall therefore make a
brief detour to present the unification algorithm.

To see why unification is needed, consider once again the description of the letrec rule —
Assuming a monomorphic type ; for z;, if we can show that e; too has the type 7; The
work of guessing the right type 7; for z;, which would seem to require an oracle, is actually
done by unification.

5.1 TUnification

A term! is either a constant (denoted by a, b, c ...), a variable (denoted by z, y, z ...)
or an entity of the form f(t1,%2,...%,) where f is a n-ary function symbol (other function
symbols will be denoted by g, h) and each ¢; is a term. In the specific context of type checking,
terms are made of type variables (o,) and type constants (Int, Bool), and the role of
function symbols is played by type constructors like — and List. So example of a term is
(@ —b—b) = b— Lista — b.2.

Once again, a substitution is a pair consisting of a variable z and a term ¢, and is denoted
by z/t. A substitution list @ is a set of such substitutions {1/t ...x,/t,}. A substitution
list 6 applied to a term ¢, denoted by 8 t, involves simultaneous substitution of the variables
1 ...Zp, if they occur in ¢, by the corresponding type expressions t; ...t¢,. For example if

0 ={z/h(d),y/d} and t = f(z,g(y),c), then 6 t = f(h(d), g(d),c).

!Here we are talking about terms in general, and not necessarily in the sense used earlier.
2Here we are using — in a infix fashion in contrast to the general description of terms where function symbols
(like f) were shown as being prefix.

11

If 6 is a substitution list and ¢; and ¢y are terms such that 0 t; = 0 ¢, then 0 is called an
unifier of t; and to. For example, {z/a,y/c, z/b,w/c} is an unifier of f(z,b,y) and f(a,z, w).
A unifier o for a pair of terms is also a most general unifier (mgu), if for any other unifier

o1 for the same terms, there exists a substitution list p such that o1 = p o, where p o is an

obvious extension of application of a substitution to another substitution list instead of a term.
{z/a,y/w,z/b} is a mgu of the terms f(x,b,y) and f(a,z,w).

The Unification Algorithm
Input: Two terms t; and to.

Output: The mgu, if it exists, else an error message

L. mgu = {}; ws = {< 1,12 >}

2. While ws is not empty do

(a) Remove a pair {< ¢,#' >} from ws.

(b) Consider the following cases:

case 1.

case 2.

case 3.

case 4.

case .

If t and ¢’ are identical variables or constants, do nothing.
If t is a variable not occurring in #'

Replace all terms " in ws and in mgu by {t/¢'} ¢".

mgu = mgu U {< t,t' >}

If ¢ is a variable not occurring in ¢

Replace all terms " in ws and in mgu by {¢'/t} t".

mgu = mgu U {< 't >}

if t = f(t11,...t1n) and ¢ = f(£},,... ¢,), then

ws =ws U {< ty1,t), > ... < t,t), >}

Raise an error.

We now give some examples to illustrate the unification algorithm.

Example 1: Unify f(g(z), h(b, g(h(c, d))), y) and f(g(h(w, y)), z, g(2)).

We show below the values of the variables mgu and ws for each iteration of the while loop.

Iteration 1: mgu = {}

ws ={< f(g(z), h(b, g(hlc, d)), y), f(g(h(w, y)), =, g(z)) >}

Iteration 2: mgu = {}

ws ={< g(x), g(h(w, y)) >, <h(b, g(h(e, d)), z) >, <y, g(z) >}

Iteration 3: mgu = {}

ws = {< z, h(w, y) >, < h(b, g(h(c, d))),) >, <y, g(z) >}

Tteration 4: mgu = {< z, h(w, y) >}

ws = {< h(b, g(h(c, d))), h(w, y)) >, <y, g(z) >}

12

Tteration 5: mgu = {< z, h(w, y) >}
ws ={<b, w>,<g(hc,d)), y >, <y, g(z) >}

Iteration 6: mgu = {< z, h(b,y) >, <w,b >}
ws = {< g(h(c,d), y >, <y, g(z) >}

Iteration 7: mgu = {< z, h(b, g(h(c,d))) >, <w,b>, <y, g(h(c,d)) >}
ws = {< g(h(c,d)), g(z) >}

Iteration 8: mgu = {< z, h(b, g(h(c,d))) >, <w,b >, <y, g(h(c,d)) >}
ws = {< h(c,d), z >}

Iteration 9: mgu = {< z, h(b, g(h(c,d))) >, <w,b>, <y, g(h(c,d)) >, < z, h(c,d) >}

ws = {}

5.2 The algorithm:

Given a term to be type checked, various inputs that the algorithm requires and the outputs
that it produces are given by the following diagram:

——— term ¢ to be typechecked

Y

1'1/

Here T is called the type environment and plays the same role as type assumptions in the
type system described earlier. The type checker takes a term ¢ and a type environment I' and
produces as output the type o of ¢ and a modified environment I'V. T

We now present the algorithm by a case analysis on the structure of the term. For each
case the details of the algorithm will be presented through a diagram and some comments.

Case 1: t is a variable z

T[Oél/ﬁl,. . an/ﬁn]a /617' . ﬁnlér

Y

Fe=Vay,...ap-7

13

Here (4, ..., B, are fresh variables. The rule says that the type of a variable is found by
looking into the environment. The reason for monomorphising the type of z is that we try
to find the type of a variable only in the context of an application, and our application is
monomorphic.

Case 2: t is a lambda abstraction \z.e

Ax T =T
F T
— » TU(z:a) L
_— o Fl
a kT ’ >
FI
e =7

To find the type of Ax.e in an environment T,

1. typecheck e in an environment I' augmented with an assumed type « for . Assume that
the result is a type 7 and a changed environment I".

2. Let the (refined) type of z in TV be 7y.
3. The type of Az.e is 7y — 7 and the final environment is T".

Case 3: ¢ is an application (e; e3)

T4
.
N
T1 T2
> >
> e1] €2 0T
> >
r T I
Ly

unify (11,75 > a)=0and 7 =13 > 74

This rule is to be read as:

1. Typecheck e; with the initial environment I'. Let the result be 71 and I';.

14

2. Typecheck es with the environment I';. Let the result be 75 and I's.
3. Unify 7 and 75 — «. Assume that the unifier is #. And the unified term (0 1) is 73 — 74.
4. Then the type of the application is 74 and the modified environment is 6 I's.

Case 4: t is a let expression let x =e; in e

@ T3
—
/Gl 1-1 T3
2 —
X e
. R
T1
> €1 . I's
> T
r T -
Iy —{z:_}

oc=Vaj...an T, a1...0p € T, al...angﬂ‘
I'y=T1U(z:0)

To typecheck let x = e1 in e in the environment T,
1. Typecheck e; in the environment I' resulting in a type 7 and a modified environment 'y

2. Let o be an appropriate polymorphic form of 7 and I's be I'y augmented with the type

of x as o.

3. Typecheck e in the environment I's resulting in a type 73 and a modified environment
Is.

4. The type of the let expression is 73, and the modified environment is I'3 with the type of
z deleted.

Case 5: t is a letrec expression letrecz =ej ine

15

letrec
73
—
T3
— —
r T Ty e
— >
———— “ — I3
F'U(z:a) ST
Ly —{z:_}
Ly
=012, 0=nunify (r,72), 7"=0n
oc=Vay...on-7, a1,...,0n €T, a1,...,0,¢T
To=0T1)U(z:0)
The above rule is to be read as follows. To typecheck letrec £ = ey in e in the environment
L,

. Typecheck e in the environment I" augmented with a type assumption « for the variable
. Assume that this results in a type 71 and a modified environment T'y

. Let m be the refined type of z in I';. Unify this with the type 7 of e;. Let the unifier
be 6 and the unified type be 7'.

. Let o be an appropriate polymorphic form of 7/. Also let I's be I'y modified taking the
unification process into account and further augmented with the type of z as o.

. Typecheck e in the environment I's resulting in a type 73 and a modified environment
Is.

. The type of the let expression is 73, and the modified environment is I'3 with the type of
z deleted.

16

