
Notes on typesAuthor: Amitabha SanyalLast updated: 28th September 2001AbstratIn this report we disuss the basi issues related to type heking and type inferening.After introduing the framework for presenting type systems, we prsent type systems for twolanguages � ! Curry and Milner's languge (� ! Curry + let). We then present a typeinferening algorithm for the seond language. This algorithm forms the ore of all typeinferening algorithms based on the Hindley-Milner type system.1 IntrodutionTo see the plae of type systems in programming languages, look at the diagram given below:
Unchecked

Dynamic and strong

Static and not strong

Strong and (static + dynamic)

(machine language, untyped lambda calculus)

(C,Pascal)

(ML, Haskell)

(Perl,Awk)

(Lisp)

(Ada, Java)

Static Dynamic

Strong

Dynamic and not strong

Static and strongEvery programming language de�nition inludes a list of forbidden errors. Examples offorbidden errors are adding a pair of booleans and aessing an array element beyond itsbound.A programming lnguage may take one of the following stands with respet to forbiddenerrors. 1

1. It may hek for and prevent all forbidden errors. Then it is alled a strongly typedlanguage. Further, it may do so statially (at ompile time like ML and Haskell), dy-namially (at runtime like LISP), or both statially and dynamially (as in Ada andJava).2. It may hek for only a proper subset of forbidden errors. This is the ase with languageslike C and Pasal. Both these languages onsider out-of-bounds array aess as a forbid-den error. However, both these languages are statially heked and ignore out-of-boundsaesses that our at run time.3. Finally there are languages like untyped lambda alulus whih have no forbidden errorsand onsequently do not do any heking.Type systems are onerned with languages whih perform stati heking. The algorithmdoing so is alled a typeheker. A typeheker is based on ertain rules given by a type system.2 Type SystemsSo what does a type system onsist of?1. A set of terms (or programs, we shall use the two words interhangeably) whih are tobe typed.2. A set of type expressions to desribe the types of the above terms.3. Assignment or type rules whih enable us to make judgements suh as: a program M hasthe type �.With a type system in plae, one an de�ne two problems:1. Prove that a program M has the type � under the type system. This is the type hekingproblem.2. Find out a type � for the program M under the type system. This is the type infereningproblem.In general, the seond problem, is harder than the �rst. Now let us look at the threeomponents of a type system in turns.2.1 TermsThis is essentially the programming language whose programs we want to type hek. Even-tually we want to type a reasonable subset of Haskell. But, to start with, we shall attempt totype �-terms augmented with onstants. Thus our terms are given by the following grammar:M ! var j onstant j �var:M jM1 M2We shall use x, y and z to range over variables (var) and to range over onstants. Mand N shall range over terms. This language is alled �! Curry.
2

2.2 TypesThe language of types is given by the following grammar:T = V j C j T ! T j � T T j (T) (monomorphi types)� = T j 8V:� (polymorphi types)This says that a monomorphi type is either a type variable (V), a onstant type C, afuntion type T ! T or a type onstrutor � (like List) applied to type expressions. Whereasa polymorphi type is either a monomorphi type or a type with quanti�ed type variables.Note that the quanti�ers appear at the outermost level of a type expression.We shall use �; � to range over type variables, � to range over monomorphi types and �to range over polymorphi types. Further, we shall assume that ! assoiates to the right.Let us take some examples. Examples of monomorphi types are Int, �, � ! Int and� ! �. Examples of polymorphi types whih are not monomorphi are 8�:�, 8�:� ! Intand 8�8�:�! �.What does a type like 8�:�! Int really mean? If f has this type, then it an be used in aontext whih requires a value of the type Int! Int or Bool ! Int or (List Int)! Int. Wean summarize this by saying that f an be used in ontext whih requires the type �! Int.The di�erene between a monomorphi type like � ! Int and a polymorphi type like8�:�! Int is often a soure of onfusion. Read �! Int as the type of a funtion from somespei� type � (whose details are not important) to Int. Whereas 8�:� ! Int is the type offuntions whih an take values of any onrete type as argument and return a Int as result.8�:� ! Int an be "instantiated" to a monomorphi type, say Int ! Int, whereas � ! Intannot. Also, a type like � ! Int is used during the proess of reasoning about types and isnot the �nal type of any term. As an analogy, you might also like to think of the di�erenebetween the terms �x:x+ 2 and x+ 2.The use of type expressions is illustrated by type heking a term suh as foldr Cons [℄ [1; 2; 3℄.First foldr has the polymorphi type 8a8b: (a ! b ! b) ! b ! List a ! b. Instantiatinga to Int and b to List Int, we see that foldr an work in the ontext (Int ! (List Int) !(List Int)) ! (List Int) ! List Int ! (List Int). Similarly, Cons has the polymorhitype 8a:a ! (List a) ! (List a), whih an work in the ontext of Int ! (List Int) !(List Int). Finally [℄ has the type 8a: List a, whih an work in the ontext of List Int. Sofoldr Cons [℄ [1; 2; 3℄ is a proper appliation.As another example, onsider foldr Cons. In this ase, we instantiate foldr to (a !(List a)! (List a))! (List a)! (List a)! (List a) and Cons to (a! (List a)! (List a).Therefore (foldr Cons) has the monomorphi type (List a) ! (List a) ! (List a). We analso say that sine no assumption was made regarding the type of a, (foldr Cons) also hasthe polymorphi type 8a:(List a)! (List a)! (List a)Also note that the type variables in a Haskell type expression are impliitly quanti�ed.Thus the type of foldr, expressed in Haskell as (a ! b ! b) ! b ! List a ! b, is in ournotation, 8a8b: (a! b! b)! b! List a! b.
3

2.3 Type rulesType rules allow us to make judgment of the form � `M :: �. Read this as { from the set ofassumptions � it an be judged that M is of the type �. An assumption is of the form x :: �or :: �, and is to be read as { the variable x (or onstant) is of the type �. Thus the judgmentfx :: �g ` �y:x :: 8�:� ! �says that from the set ontaining the sole assumption x :: �, one an judge that �y:x has thetype 8�:� ! �.Why do we need assumptions? Assumptions are akin to symbol tables used by ompilers.For example, a ompiler extrats information from the delaration part of a program, and putsit in the symbol table. Subsequently it uses the symbol table to proess the imperative part.Similarly, here we use assumptions to ollet information about the 'lambdas' and use thisinformation to proess the 'bodies'. As an example, to show thatfg ` �x�y:x :: 8�8�:�! � ! �we would have show as an intermediate step that, assuming that x has the type �, �y:x hasthe type � ! �. This is represented as:fx :: �g ` �y:x :: � ! �Another reason for having the assumption set is to ollet assumptions regarding onstants,built-in funtions and library funtions. A typial type judgment in suh a situation might be:f+ :: Int! Int! Int; 1 :: Intg ` �x:x+ 1 :: Int! IntIf Ji are judgments, then a type rule has one of two possible forms:J{ This is read as the judgement J an be inferred unonditionally.J1 J2 : : : JnJWhih is read as: from the judgments Ji, we an infer the judgment J .We shall now have a look at the type rules of the language disussed earlier.3 Type rules for �! Curry� [fx :: �g ` x :: � (Var)4

The �rst rule (named VAR) says that if the assumption fx :: �g is already present in theassumption set, then we an have this fat as onlusion. We have similarly,� [f :: �g ` :: � (Con)The next rule that we are about to introdue, would allow us to make inferenes of theform � ` x :: 8�:�! �� ` x :: Int! IntThe type Int ! Int is alled a generi instane of 8�:� ! �. Intuitively, �0 is a generiinstane of � if � an be used in any ontext in whih �0 an be used. In the lattie diagramshown below, � � �0 i� �0 is a generi instane of �.

V α.α

V α.α−>α

Intα −>

Intα.α−>V

Int −>Int

V αβγ. α −> β −> γ

V αβ.α−>βαBool

Now for the formal de�nition of generi instanes. First a substitution is a pair onsistingof a type variable and a monomorphi type expression, and is denoted by �=� . A substitutionlist S is a set of suh substitutions f�1=�1 : : : �n=�ng. A substitution list S applied on a typeexpression �, denoted by S � involves simultaneous substitution of the variables �1 . . .�n, ifthey our free in �, by the orresponding type expressions �1 . . . �n.Let � = 8�1 : : : �m:� and �0 = 8�1 : : : �n:� 0. Then �0 is a generi instane of �, i� there isa substitution S ating only on f�1 : : : �mg suh that � 0 = S(�) and no �i is free in �.We are now in a position to give the next rule:� `M :: � �0 � �� `M :: �0 (Inst)Clearly, the restrition that no �i is free in � is needed, else we would have absurdities like�! Int � 8�:�! Int.To illustrate the next rule, we shall onsider a proof of 8a8b:(a � b)(a + b) = a2 � b2. Toprove this, we onsider two arbitrary variables a and b, where arbitrary means that we donot asribe any partiular properties to these variables. Now we do the usual alulations:5

(a� b)(a+ b)a2 + ab� ba� b2. . .a2 � b2We then say that sine nothing was assumed about a and b, we have in e�et proved that8a8b:(a� b)(a+ b) = a2 � b2. In a similar vein, our next rule allows us to add quanti�ers to ajudged type.If a type variable � ours free within a type expression �, we denote it as � 2 FV (�).Further � 2 FV (�), if � 2 FV (�) for some � ourring in �.Now for the next rule, whih is alled GEN, standing for generalization:� `M :: � � =2 FV (�)� `M :: 8�:� (Gen)Our �nal two rules relate to abstration and appliation and are alled M-ABS and M-APP.The pre�x M stands for monomorphi. Reall that � ranges over monomorphi types and �ranges over polymorphi types.� `M :: �1 ! �2 � ` N :: �1� `M N :: �2 (M-App)�; x :: �1 `M :: �2� ` �x:M :: �1 ! �2 (M-Abs)We shall now look at a series of examples. In eah example, the judgment on a partiularline follows from the judgment on the next line using the rule spei�ed between the two lines.Example 1:fg ` �x:x :: 8�:�! �GENfg ` �x:x :: �! �M-ABSfx :: �g ` x :: �VARExample 2:fg ` �xyz:x z(y z) :: 8��:(� ! � !)! (� ! �)! �! GEN (3 times)fg ` �xyz:x z(y z) :: (�! � !)! (�! �)! �! M-ABS (3 times)fx :: �! � ! ; y :: �! �; z :: �g ` x z(y z) :: M-APPfx :: �! � ! ; y :: �! �; z :: �g ` x z :: � ! andfx :: �! � ! ; y :: �! �; z :: �g ` (y z) :: �6

We shall onsider the �rst onjunt only:M-APPfx :: �! � ! ; y :: �! �; z :: �g ` x :: �! � ! andfx :: �! � ! ; y :: �! �; z :: �g ` z :: �VAR (one for eah onjunt)Example 3:�x:x x annot be typed. The reason is: assume that the type of the seond ourreneof x is �. Then the type of the �rst ourrene of x is � ! �. Sine the types of the twoourrenes of x must be the same, the type of the seond ourrene now is �! � and thatof the �rst is �! � ! and so on.Example 4:fg ` �x:x :: Int! IntM-ABSfx :: Intg ` x :: IntVARThe point of the above example is to show that the type system allows more than one typejudgments 8�:� ! � and Int ! Int for the same term �x:x. However, it is desirable that atype-inferening algorithm should return a unique type (the prinipal type) for eah term.Example 4:In this example we shall try to type the term �fxy:(f x; f y). Remember that (f x; f y) isatually Pair (f x) (f y). We shall use the notation (;) both for the type onstrutor Tupleas well as the data onstrutor Pair. We shall try to show the judgmentf(;) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: 8��:(� ! �)! �! �! (�; �)GENf(;) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: (�! �)! �! �! (�; �)M-ABSf(;) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f x; f y) :: (�; �)M-APPf(;) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` (;) (f x) :: � ! (�; �) andf(;) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f y) :: �One again we shall prove the �rst onjunt, whih is more interesting.M-APPf(;) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` (;) :: � ! � ! (�; �) andf(;) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f x) :: �the �rst onjunt is proved by:f(;) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (;) :: � ! � ! (�; �)INSTf(;) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` (;) :: 8��:�! � ! (�; �)VAR 7

and the seond onjunt by M-APPf(;) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` f :: �! � andf(;) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` x :: �Both of whih are proved by VAR.It an be �gured out that 8��:(� ! �)! �! �! (�; �) is the most general type of theterm �fxy:(f x; f y). In this, the types of the arguments x and y are fored to be idential.This makes a seemingly sensible term like(�fxy:(f x; f y)) (�x:x) 3 Trueill-typed under this type system!Notie arefully the soure of the problem. This type system fores one to judge the type ofa lambda body from monomorphi type assumptions regarding lambda bound variables. Thusall ourrene of the lambda variable in the body are fored to have the same monomorphitype. This is illustrated by the boxed step. The type of (fx; fy) is being judged from theassumption f :: �! �. Thus both x and y are fored to have the same type �.To �x this problem, we �rst have to hange the language of typesT = V j C j T ! T (monomorphi types)� = T j 8V:� j �! � (polymorphi types)Notie that we now permit quanti�ers at inner levels of a type expression. Thus 8�:(8�:� !�) ! � ! ! (�;) is now a valid type expression. We also introdue the following tworules instead of M-ABS and M-APP.� `M :: �1 ! �2 � ` N :: �1� `M N :: �2 (P-App)�; x :: �1 `M :: �2� ` �x:M :: �1 ! �2 (P-Abs)Example 5:Let us now show the following type judgment:f(;) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: 8�:(8�:�! �)! � ! ! (�;)GEN (3 times) followed by P-ABS (3 times) givesf(;) :: 8��:�! � ! (�; �); f :: (8�:�! �); x :: �; y :: g ` (f x; f y) :: (�;)P-APP (2 times)f(;) :: 8��:� ! � ! (�; �); f :: (8�:�! �); x :: �; y :: g ` (;) :: � ! ! (�;) andf(;) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: g ` f x :: � andf(;) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: g ` f y :: 8

Notie that if the judgment goes through, the f x and f y would have di�erent types. Wejust show that f x :: �. This follows fromf(;) :: 8��:� ! � ! (�; �); f :: (8�:�! �); x :: �; y :: g ` f :: � ! � andf(;) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: g ` x :: �The �rst onjunt is got by an INST followed by a VAR. The seond onjunt diretly bya VAR. Observe, one again, in the boxed step of this derivation, that the type of (fx; fy) isbeing judged from a polymorphi assumption f :: 8�8�: �! � regarding the lambda variablef . Exerise:1. Complete the above judgment and make sure that you understand it.2. Now derive the following judgment:f(;) :: 8��:� ! � ! (�; �); 3 :: Int; T rue :: Boolg ` (�fxy:(f x; f y)) (�x:x) 3 True ::(Int;Bool)So it would seem that things would be �ne if had P-ABS and P-APP instead of M-ABS andM-APP. However, based on the referene (Kfoury, 1989), Barendregt reports that the problemof designing an algorithm based on the above type system is open.4 Milner's language { �! Curry + letThough the language disussed so far allows ertain funtions to be judged polymorphi, theM-APP and M-ABS rules inhibit usage of this polymorphism. To get around this problem,we introdue the let and the letre expressions.4.1 let and letreThe let expression introdues a loal environment. The expressionletx1 = e1in eis evaluated as follows: First the expression e1 is evaluated in the environment surroundingthe let expression. The expression e is then evaluated in a modi�ed environment in whih thevariable x1 is bound to this value. Thus assuming the value of x in the surrounding ontextto be 5, the the value ofletx = x+ 1in 2 � xis 12. The let expression an also be generalized to9

letx1 = e1x2 = e2: : :xn = enin e.This is equivalent to:letx1 = e1in letx2 = e2: : : in letxn = enin e.We abbreviate the general let as:letxi = eiin eOn the other hand the expressionletrex = x+ 1in 2 � xyields an unde�ned value beause the x on the left and right hand side of the = representsthe same x, and there is no (integer) value of x satisfying x = x + 1. letre are used forreursive de�nitions suh asletrefat = �n:if (n == 0) then 1 else fat(n� 1)in fat 5Note that there is no let in the above sense in Haskell. The Haskell let is atually a letre.We shall now present the rule for a let expression and illustrate it by an example.�0 = � �i = �i�1 [fxi :: �ig �i�1 ` ei :: �i �n ` e :: �� ` let xi = ei in e :: � (let)Let us illustrate the rule with the following judgment:f3 :: Int; T rue :: Boolg ` let id = �x:x in (id 3; id T rue) :: (Int;Bool)10

LETf3 :: Int; T rue :: Boolg ` �x:x :: 8�:�! � andf3 :: Int; T rue :: Bool; id :: 8�:�! �g ` (id 3; id T rue) :: (Int;Bool)Complete the rest of the proof. Also notie that the parametri polymorphism of id isatually being used. Now the rule for letre.� [fxi :: �ig ` ei :: �i � [fxi :: �ig ` e :: � �i = 8�1 : : : �n�i �i =2 FV (�)� ` letre xi = ei in e :: � (letre)Read this rule as follows: Assuming a monomorphi type �i for xi, suppose we an judgethat ei too has the same type �i. Further, assuming that xi has the polymorphi type �i,where �i is an appropriate generalization of �i, suppose we an show that e has the type �.Then the entire letre expression too has the type �.5 An Algorithm for type infereningWe shall now desribe a type inferening algorithm for Milner's language. Reall that the typeinferene problem is: Given a program M , �nd a type � suh that M :: �. To explain thetype inferening algorithm, we �rst need to explain uni�ation. We shall therefore make abrief detour to present the uni�ation algorithm.To see why uni�ation is needed, onsider one again the desription of the letre rule {Assuming a monomorphi type �i for xi, if we an show that ei too has the type �i Thework of guessing the right type �i for xi, whih would seem to require an orale, is atuallydone by uni�ation.5.1 Uni�ationA term1 is either a onstant (denoted by a, b, . . .), a variable (denoted by x, y, z . . .)or an entity of the form f(t1; t2; : : : tn) where f is a n-ary funtion symbol (other funtionsymbols will be denoted by g, h) and eah ti is a term. In the spei� ontext of type heking,terms are made of type variables (�, �) and type onstants (Int, Bool), and the role offuntion symbols is played by type onstrutors like ! and List. So example of a term is(a! b! b)! b! List a! b.2.One again, a substitution is a pair onsisting of a variable x and a term t, and is denotedby x=t. A substitution list � is a set of suh substitutions fx1=t1 : : : xn=tng. A substitutionlist � applied to a term t, denoted by � t, involves simultaneous substitution of the variablesx1 . . . xn, if they our in t, by the orresponding type expressions ti . . . tn. For example if� = fx=h(d); y=dg and t = f(x; g(y);), then � t = f(h(d); g(d);).1Here we are talking about terms in general, and not neessarily in the sense used earlier.2Here we are using ! in a in�x fashion in ontrast to the general desription of terms where funtion symbols(like f) were shown as being pre�x. 11

If � is a substitution list and t1 and t2 are terms suh that � t1 = � t2, then � is alled anuni�er of t1 and t2. For example, fx=a; y=; z=b; w=g is an uni�er of f(x; b; y) and f(a; z; w).A uni�er � for a pair of terms is also a most general uni�er (mgu), if for any other uni�er�1 for the same terms, there exists a substitution list � suh that �1 = � �, where � � is anobvious extension of appliation of a substitution to another substitution list instead of a term.fx=a; y=w; z=bg is a mgu of the terms f(x; b; y) and f(a; z; w).The Uni�ation AlgorithmInput: Two terms t1 and t2.Output: The mgu, if it exists, else an error message1. mgu = fg; ws = f< t1; t2 >g2. While ws is not empty do(a) Remove a pair f< t; t0 >g from ws.(b) Consider the following ases:ase 1. If t and t0 are idential variables or onstants, do nothing.ase 2. If t is a variable not ourring in t0Replae all terms t00 in ws and in mgu by ft=t0g t00.mgu = mgu [f< t; t0 >gase 3. If t0 is a variable not ourring in tReplae all terms t00 in ws and in mgu by ft0=tg t00.mgu = mgu [f< t0; t >gase 4. if t = f(t11; : : : t1n) and t0 = f(t011; : : : t01n), thenws = ws [f< t11; t01n > : : : < t11; t01n >g.ase 5. Raise an error.We now give some examples to illustrate the uni�ation algorithm.Example 1: Unify f(g(x); h(b; g(h(; d))); y) and f(g(h(w; y)); x; g(z)).We show below the values of the variables mgu and ws for eah iteration of the while loop.Iteration 1: mgu = fgws = f< f(g(x); h(b; g(h(; d))); y), f(g(h(w; y)); x; g(z)) >gIteration 2: mgu = fgws = f< g(x); g(h(w; y)) >; < h(b; g(h(; d))); x) >; < y; g(z) >gIteration 3: mgu = fgws = f< x; h(w; y) >; < h(b; g(h(; d))); x) >; < y; g(z) >gIteration 4: mgu = f< x; h(w; y) >gws = f< h(b; g(h(; d))); h(w; y)) >; < y; g(z) >g12

Iteration 5: mgu = f< x; h(w; y) >gws = f< b; w >;< g(h(; d)); y >; < y; g(z) >gIteration 6: mgu = f< x; h(b; y) >; < w; b >gws = f< g(h(; d)); y >; < y; g(z) >gIteration 7: mgu = f< x; h(b; g(h(; d))) >; < w; b >; < y; g(h(; d)) >gws = f< g(h(; d)); g(z) >gIteration 8: mgu = f< x; h(b; g(h(; d))) >; < w; b >; < y; g(h(; d)) >gws = f< h(; d); z >gIteration 9: mgu = f< x; h(b; g(h(; d))) >; < w; b >; < y; g(h(; d)) >; < z; h(; d) >gws = fg5.2 The algorithm:Given a term to be type heked, various inputs that the algorithm requires and the outputsthat it produes are given by the following diagram:- --term t to be typeheked� �
�0Here � is alled the type environment and plays the same role as type assumptions in thetype system desribed earlier. The type heker takes a term t and a type environment � andprodues as output the type � of t and a modi�ed environment �0. TWe now present the algorithm by a ase analysis on the struture of the term. For eahase the details of the algorithm will be presented through a diagram and some omments.Case 1: t is a variable x- --x� � [�1=�1; : : : �n=�n℄; �1; : : : �n 6 2�

� x = 8�1; : : : �n � � �
13

Here �1; : : : ; �n are fresh variables. The rule says that the type of a variable is found bylooking into the environment. The reason for monomorphising the type of x is that we tryto �nd the type of a variable only in the ontext of an appliation, and our appliation ismonomorphi.Case 2: t is a lambda abstration �x:e
---- --e� [(x : �)� 6 2�� ��0

�x �1 ! �
�0�0x = �1To �nd the type of �x:e in an environment �,1. typehek e in an environment � augmented with an assumed type � for x. Assume thatthe result is a type � and a hanged environment �0.2. Let the (re�ned) type of x in �0 be �1.3. The type of �x:e is �1 ! � and the �nal environment is �0.Case 3: t is an appliation (e1 e2)

����####### - -- � -- --�
e1 e2� �1�1 �1 �2�2 � �2

�4

unify (�1; �2 ! �) = � and � �1 = �3 ! �4This rule is to be read as:1. Typehek e1 with the initial environment �. Let the result be �1 and �1.14

2. Typehek e2 with the environment �1. Let the result be �2 and �2.3. Unify �1 and �2 ! �. Assume that the uni�er is �. And the uni�ed term (� �1) is �3 ! �4.4. Then the type of the appliation is �4 and the modi�ed environment is � �2.Case 4: t is a let expression let x = e1 in e
�������� llllll..........................�� - 6 - -

-
- --����

-=x ee1 �2 �3 � fx :: g�3�3�2� �1�1
�3

� = 8�1 : : : �n � �1; �1 : : : �n 2 �1; �1 : : : �n 62��2 = �1 [(x : �)

let

To typehek let x = e1 in e in the environment �,1. Typehek e1 in the environment � resulting in a type �1 and a modi�ed environment �12. Let � be an appropriate polymorphi form of �1 and �2 be �1 augmented with the typeof x as �.3. Typehek e in the environment �2 resulting in a type �3 and a modi�ed environment�3.4. The type of the let expression is �3, and the modi�ed environment is �3 with the type ofx deleted.Case 5: t is a letre expression letre x = e1 in e
15

����bbbb��� """""""""" JJJJJJJJJ- - - .6
-- --

-
-� [(x :: �)�

letre
= e1 e �3�3�2�2�1�1

�3
�3 � fx :: g

�2 = �1 x, � = unify (�1; �2); � 0 = � �1� = 8�1 : : : �n � � 0; �1; : : : ; �n 2 � 0; �1; : : : ; �n 62��2 = (� �1) [(x : �)

x

The above rule is to be read as follows. To typehek letre x = e1 in e in the environment�, 1. Typehek e1 in the environment � augmented with a type assumption � for the variablex. Assume that this results in a type �1 and a modi�ed environment �12. Let �2 be the re�ned type of x in �1. Unify this with the type �1 of e1. Let the uni�erbe � and the uni�ed type be � 0.3. Let � be an appropriate polymorphi form of � 0. Also let �2 be �1 modi�ed taking theuni�ation proess into aount and further augmented with the type of x as �.4. Typehek e in the environment �2 resulting in a type �3 and a modi�ed environment�3.5. The type of the let expression is �3, and the modi�ed environment is �3 with the type ofx deleted.
16

