
Notes on typesAuthor: Amitabha SanyalLast updated: 28th September 2001Abstra
tIn this report we dis
uss the basi
 issues related to type 
he
king and type inferen
ing.After introdu
ing the framework for presenting type systems, we prsent type systems for twolanguages � ! Curry and Milner's languge (� ! Curry + let). We then present a typeinferen
ing algorithm for the se
ond language. This algorithm forms the 
ore of all typeinferen
ing algorithms based on the Hindley-Milner type system.1 Introdu
tionTo see the pla
e of type systems in programming languages, look at the diagram given below:
Unchecked

Dynamic and strong

Static and not strong

Strong and  (static + dynamic)

(machine language, untyped lambda calculus)

(C,Pascal)

(ML, Haskell)

(Perl,Awk)

(Lisp)

(Ada, Java)

Static Dynamic

Strong

Dynamic and not strong

Static and strongEvery programming language de�nition in
ludes a list of forbidden errors. Examples offorbidden errors are adding a pair of booleans and a

essing an array element beyond itsbound.A programming lnguage may take one of the following stands with respe
t to forbiddenerrors. 1



1. It may 
he
k for and prevent all forbidden errors. Then it is 
alled a strongly typedlanguage. Further, it may do so stati
ally (at 
ompile time like ML and Haskell), dy-nami
ally (at runtime like LISP), or both stati
ally and dynami
ally (as in Ada andJava).2. It may 
he
k for only a proper subset of forbidden errors. This is the 
ase with languageslike C and Pas
al. Both these languages 
onsider out-of-bounds array a

ess as a forbid-den error. However, both these languages are stati
ally 
he
ked and ignore out-of-boundsa

esses that o

ur at run time.3. Finally there are languages like untyped lambda 
al
ulus whi
h have no forbidden errorsand 
onsequently do not do any 
he
king.Type systems are 
on
erned with languages whi
h perform stati
 
he
king. The algorithmdoing so is 
alled a type
he
ker. A type
he
ker is based on 
ertain rules given by a type system.2 Type SystemsSo what does a type system 
onsist of?1. A set of terms (or programs, we shall use the two words inter
hangeably) whi
h are tobe typed.2. A set of type expressions to des
ribe the types of the above terms.3. Assignment or type rules whi
h enable us to make judgements su
h as: a program M hasthe type �.With a type system in pla
e, one 
an de�ne two problems:1. Prove that a program M has the type � under the type system. This is the type 
he
kingproblem.2. Find out a type � for the program M under the type system. This is the type inferen
ingproblem.In general, the se
ond problem, is harder than the �rst. Now let us look at the three
omponents of a type system in turns.2.1 TermsThis is essentially the programming language whose programs we want to type 
he
k. Even-tually we want to type a reasonable subset of Haskell. But, to start with, we shall attempt totype �-terms augmented with 
onstants. Thus our terms are given by the following grammar:M ! var j 
onstant j �var:M jM1 M2We shall use x, y and z to range over variables (var) and 
 to range over 
onstants. Mand N shall range over terms. This language is 
alled �! Curry.
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2.2 TypesThe language of types is given by the following grammar:T = V j C j T ! T j � T T j (T ) (monomorphi
 types)� = T j 8V:� (polymorphi
 types)This says that a monomorphi
 type is either a type variable (V ), a 
onstant type C, afun
tion type T ! T or a type 
onstru
tor � (like List) applied to type expressions. Whereasa polymorphi
 type is either a monomorphi
 type or a type with quanti�ed type variables.Note that the quanti�ers appear at the outermost level of a type expression.We shall use �; � to range over type variables, � to range over monomorphi
 types and �to range over polymorphi
 types. Further, we shall assume that ! asso
iates to the right.Let us take some examples. Examples of monomorphi
 types are Int, �, � ! Int and� ! �. Examples of polymorphi
 types whi
h are not monomorphi
 are 8�:�, 8�:� ! Intand 8�8�:�! �.What does a type like 8�:�! Int really mean? If f has this type, then it 
an be used in a
ontext whi
h requires a value of the type Int! Int or Bool ! Int or (List Int)! Int. We
an summarize this by saying that f 
an be used in 
ontext whi
h requires the type �! Int.The di�eren
e between a monomorphi
 type like � ! Int and a polymorphi
 type like8�:�! Int is often a sour
e of 
onfusion. Read �! Int as the type of a fun
tion from somespe
i�
 type � (whose details are not important) to Int. Whereas 8�:� ! Int is the type offun
tions whi
h 
an take values of any 
on
rete type as argument and return a Int as result.8�:� ! Int 
an be "instantiated" to a monomorphi
 type, say Int ! Int, whereas � ! Int
annot. Also, a type like � ! Int is used during the pro
ess of reasoning about types and isnot the �nal type of any term. As an analogy, you might also like to think of the di�eren
ebetween the terms �x:x+ 2 and x+ 2.The use of type expressions is illustrated by type 
he
king a term su
h as foldr Cons [ ℄ [1; 2; 3℄.First foldr has the polymorphi
 type 8a8b: (a ! b ! b) ! b ! List a ! b. Instantiatinga to Int and b to List Int, we see that foldr 
an work in the 
ontext (Int ! (List Int) !(List Int)) ! (List Int) ! List Int ! (List Int). Similarly, Cons has the polymorhi
type 8a:a ! (List a) ! (List a), whi
h 
an work in the 
ontext of Int ! (List Int) !(List Int). Finally [ ℄ has the type 8a: List a, whi
h 
an work in the 
ontext of List Int. Sofoldr Cons [ ℄ [1; 2; 3℄ is a proper appli
ation.As another example, 
onsider foldr Cons. In this 
ase, we instantiate foldr to (a !(List a)! (List a))! (List a)! (List a)! (List a) and Cons to (a! (List a)! (List a).Therefore (foldr Cons) has the monomorphi
 type (List a) ! (List a) ! (List a). We 
analso say that sin
e no assumption was made regarding the type of a, (foldr Cons) also hasthe polymorphi
 type 8a:(List a)! (List a)! (List a)Also note that the type variables in a Haskell type expression are impli
itly quanti�ed.Thus the type of foldr, expressed in Haskell as (a ! b ! b) ! b ! List a ! b, is in ournotation, 8a8b: (a! b! b)! b! List a! b.
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2.3 Type rulesType rules allow us to make judgment of the form � `M :: �. Read this as { from the set ofassumptions � it 
an be judged that M is of the type �. An assumption is of the form x :: �or 
 :: �, and is to be read as { the variable x (or 
onstant 
) is of the type �. Thus the judgmentfx :: �g ` �y:x :: 8�:� ! �says that from the set 
ontaining the sole assumption x :: �, one 
an judge that �y:x has thetype 8�:� ! �.Why do we need assumptions? Assumptions are akin to symbol tables used by 
ompilers.For example, a 
ompiler extra
ts information from the de
laration part of a program, and putsit in the symbol table. Subsequently it uses the symbol table to pro
ess the imperative part.Similarly, here we use assumptions to 
olle
t information about the 'lambdas' and use thisinformation to pro
ess the 'bodies'. As an example, to show thatfg ` �x�y:x :: 8�8�:�! � ! �we would have show as an intermediate step that, assuming that x has the type �, �y:x hasthe type � ! �. This is represented as:fx :: �g ` �y:x :: � ! �Another reason for having the assumption set is to 
olle
t assumptions regarding 
onstants,built-in fun
tions and library fun
tions. A typi
al type judgment in su
h a situation might be:f+ :: Int! Int! Int; 1 :: Intg ` �x:x+ 1 :: Int! IntIf Ji are judgments, then a type rule has one of two possible forms:J{ This is read as the judgement J 
an be inferred un
onditionally.J1 J2 : : : JnJWhi
h is read as: from the judgments Ji, we 
an infer the judgment J .We shall now have a look at the type rules of the language dis
ussed earlier.3 Type rules for �! Curry� [ fx :: �g ` x :: � (Var)4



The �rst rule (named VAR) says that if the assumption fx :: �g is already present in theassumption set, then we 
an have this fa
t as 
on
lusion. We have similarly,� [ f
 :: �g ` 
 :: � (Con)The next rule that we are about to introdu
e, would allow us to make inferen
es of theform � ` x :: 8�:�! �� ` x :: Int! IntThe type Int ! Int is 
alled a generi
 instan
e of 8�:� ! �. Intuitively, �0 is a generi
instan
e of � if � 
an be used in any 
ontext in whi
h �0 
an be used. In the latti
e diagramshown below, � � �0 i� �0 is a generi
 instan
e of �.

V α.α

V α.α−>α

Intα −> 

Intα.α−>V

Int −>Int

V αβγ. α −> β −> γ

V αβ.α−>βαBool

Now for the formal de�nition of generi
 instan
es. First a substitution is a pair 
onsistingof a type variable and a monomorphi
 type expression, and is denoted by �=� . A substitutionlist S is a set of su
h substitutions f�1=�1 : : : �n=�ng. A substitution list S applied on a typeexpression �, denoted by S � involves simultaneous substitution of the variables �1 . . .�n, ifthey o

ur free in �, by the 
orresponding type expressions �1 . . . �n.Let � = 8�1 : : : �m:� and �0 = 8�1 : : : �n:� 0. Then �0 is a generi
 instan
e of �, i� there isa substitution S a
ting only on f�1 : : : �mg su
h that � 0 = S(�) and no �i is free in �.We are now in a position to give the next rule:� `M :: � �0 � �� `M :: �0 (Inst)Clearly, the restri
tion that no �i is free in � is needed, else we would have absurdities like�! Int � 8�:�! Int.To illustrate the next rule, we shall 
onsider a proof of 8a8b:(a � b)(a + b) = a2 � b2. Toprove this, we 
onsider two arbitrary variables a and b, where arbitrary means that we donot as
ribe any parti
ular properties to these variables. Now we do the usual 
al
ulations:5



(a� b)(a+ b)a2 + ab� ba� b2. . .a2 � b2We then say that sin
e nothing was assumed about a and b, we have in e�e
t proved that8a8b:(a� b)(a+ b) = a2 � b2. In a similar vein, our next rule allows us to add quanti�ers to ajudged type.If a type variable � o

urs free within a type expression �, we denote it as � 2 FV (�).Further � 2 FV (�), if � 2 FV (�) for some � o

urring in �.Now for the next rule, whi
h is 
alled GEN, standing for generalization:� `M :: � � =2 FV (�)� `M :: 8�:� (Gen)Our �nal two rules relate to abstra
tion and appli
ation and are 
alled M-ABS and M-APP.The pre�x M stands for monomorphi
. Re
all that � ranges over monomorphi
 types and �ranges over polymorphi
 types.� `M :: �1 ! �2 � ` N :: �1� `M N :: �2 (M-App)�; x :: �1 `M :: �2� ` �x:M :: �1 ! �2 (M-Abs)We shall now look at a series of examples. In ea
h example, the judgment on a parti
ularline follows from the judgment on the next line using the rule spe
i�ed between the two lines.Example 1:fg ` �x:x :: 8�:�! �GENfg ` �x:x :: �! �M-ABSfx :: �g ` x :: �VARExample 2:fg ` �xyz:x z(y z) :: 8��
:(� ! � ! 
)! (� ! �)! �! 
GEN (3 times)fg ` �xyz:x z(y z) :: (�! � ! 
)! (�! �)! �! 
M-ABS (3 times)fx :: �! � ! 
; y :: �! �; z :: �g ` x z(y z) :: 
M-APPfx :: �! � ! 
; y :: �! �; z :: �g ` x z :: � ! 
 andfx :: �! � ! 
; y :: �! �; z :: �g ` (y z) :: �6



We shall 
onsider the �rst 
onjun
t only:M-APPfx :: �! � ! 
; y :: �! �; z :: �g ` x :: �! � ! 
 andfx :: �! � ! 
; y :: �! �; z :: �g ` z :: �VAR (on
e for ea
h 
onjun
t)Example 3:�x:x x 
annot be typed. The reason is: assume that the type of the se
ond o

urren
eof x is �. Then the type of the �rst o

urren
e of x is � ! �. Sin
e the types of the twoo

urren
es of x must be the same, the type of the se
ond o

urren
e now is �! � and thatof the �rst is �! � ! 
 and so on.Example 4:fg ` �x:x :: Int! IntM-ABSfx :: Intg ` x :: IntVARThe point of the above example is to show that the type system allows more than one typejudgments 8�:� ! � and Int ! Int for the same term �x:x. However, it is desirable that atype-inferen
ing algorithm should return a unique type (the prin
ipal type) for ea
h term.Example 4:In this example we shall try to type the term �fxy:(f x; f y). Remember that (f x; f y) isa
tually Pair (f x) (f y). We shall use the notation ( ; ) both for the type 
onstru
tor Tupleas well as the data 
onstru
tor Pair. We shall try to show the judgmentf( ; ) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: 8��:(� ! �)! �! �! (�; �)GENf( ; ) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: (�! �)! �! �! (�; �)M-ABSf( ; ) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f x; f y) :: (�; �)M-APPf( ; ) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` ( ; ) (f x) :: � ! (�; �) andf( ; ) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f y) :: �On
e again we shall prove the �rst 
onjun
t, whi
h is more interesting.M-APPf( ; ) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` ( ; ) :: � ! � ! (�; �) andf( ; ) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` (f x) :: �the �rst 
onjun
t is proved by:f( ; ) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` ( ; ) :: � ! � ! (�; �)INSTf( ; ) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` ( ; ) :: 8��:�! � ! (�; �)VAR 7



and the se
ond 
onjun
t by M-APPf( ; ) :: 8��:� ! � ! (�; �); f :: �! �; x :: �; y :: �g ` f :: �! � andf( ; ) :: 8��:�! � ! (�; �); f :: �! �; x :: �; y :: �g ` x :: �Both of whi
h are proved by VAR.It 
an be �gured out that 8��:(� ! �)! �! �! (�; �) is the most general type of theterm �fxy:(f x; f y). In this, the types of the arguments x and y are for
ed to be identi
al.This makes a seemingly sensible term like(�fxy:(f x; f y)) (�x:x) 3 Trueill-typed under this type system!Noti
e 
arefully the sour
e of the problem. This type system for
es one to judge the type ofa lambda body from monomorphi
 type assumptions regarding lambda bound variables. Thusall o

urren
e of the lambda variable in the body are for
ed to have the same monomorphi
type. This is illustrated by the boxed step. The type of (fx; fy) is being judged from theassumption f :: �! �. Thus both x and y are for
ed to have the same type �.To �x this problem, we �rst have to 
hange the language of typesT = V j C j T ! T (monomorphi
 types)� = T j 8V:� j �! � (polymorphi
 types)Noti
e that we now permit quanti�ers at inner levels of a type expression. Thus 8�
:(8�:� !�) ! � ! 
 ! (�; 
) is now a valid type expression. We also introdu
e the following tworules instead of M-ABS and M-APP.� `M :: �1 ! �2 � ` N :: �1� `M N :: �2 (P-App)�; x :: �1 `M :: �2� ` �x:M :: �1 ! �2 (P-Abs)Example 5:Let us now show the following type judgment:f( ; ) :: 8��:� ! � ! (�; �)g ` �fxy:(f x; f y) :: 8�
:(8�:�! �)! � ! 
 ! (�; 
)GEN (3 times) followed by P-ABS (3 times) givesf( ; ) :: 8��:�! � ! (�; �); f :: (8�:�! �); x :: �; y :: 
g ` (f x; f y) :: (�; 
)P-APP (2 times)f( ; ) :: 8��:� ! � ! (�; �); f :: (8�:�! �); x :: �; y :: 
g ` ( ; ) :: � ! 
 ! (�; 
) andf( ; ) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: 
g ` f x :: � andf( ; ) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: 
g ` f y :: 
8



Noti
e that if the judgment goes through, the f x and f y would have di�erent types. Wejust show that f x :: �. This follows fromf( ; ) :: 8��:� ! � ! (�; �); f :: (8�:�! �); x :: �; y :: 
g ` f :: � ! � andf( ; ) :: 8��:�! � ! (�; �); f :: (8�:� ! �); x :: �; y :: 
g ` x :: �The �rst 
onjun
t is got by an INST followed by a VAR. The se
ond 
onjun
t dire
tly bya VAR. Observe, on
e again, in the boxed step of this derivation, that the type of (fx; fy) isbeing judged from a polymorphi
 assumption f :: 8�8�: �! � regarding the lambda variablef . Exer
ise:1. Complete the above judgment and make sure that you understand it.2. Now derive the following judgment:f( ; ) :: 8��:� ! � ! (�; �); 3 :: Int; T rue :: Boolg ` (�fxy:(f x; f y)) (�x:x) 3 True ::(Int;Bool)So it would seem that things would be �ne if had P-ABS and P-APP instead of M-ABS andM-APP. However, based on the referen
e (Kfoury, 1989), Barendregt reports that the problemof designing an algorithm based on the above type system is open.4 Milner's language { �! Curry + letThough the language dis
ussed so far allows 
ertain fun
tions to be judged polymorphi
, theM-APP and M-ABS rules inhibit usage of this polymorphism. To get around this problem,we introdu
e the let and the letre
 expressions.4.1 let and letre
The let expression introdu
es a lo
al environment. The expressionletx1 = e1in eis evaluated as follows: First the expression e1 is evaluated in the environment surroundingthe let expression. The expression e is then evaluated in a modi�ed environment in whi
h thevariable x1 is bound to this value. Thus assuming the value of x in the surrounding 
ontextto be 5, the the value ofletx = x+ 1in 2 � xis 12. The let expression 
an also be generalized to9



letx1 = e1x2 = e2: : :xn = enin e.This is equivalent to:letx1 = e1in letx2 = e2: : : in letxn = enin e.We abbreviate the general let as:letxi = eiin eOn the other hand the expressionletre
x = x+ 1in 2 � xyields an unde�ned value be
ause the x on the left and right hand side of the = representsthe same x, and there is no (integer) value of x satisfying x = x + 1. letre
 are used forre
ursive de�nitions su
h asletre
fa
t = �n:if (n == 0) then 1 else fa
t(n� 1)in fa
t 5Note that there is no let in the above sense in Haskell. The Haskell let is a
tually a letre
.We shall now present the rule for a let expression and illustrate it by an example.�0 = � �i = �i�1 [ fxi :: �ig �i�1 ` ei :: �i �n ` e :: �� ` let xi = ei in e :: � (let)Let us illustrate the rule with the following judgment:f3 :: Int; T rue :: Boolg ` let id = �x:x in (id 3; id T rue) :: (Int;Bool)10



LETf3 :: Int; T rue :: Boolg ` �x:x :: 8�:�! � andf3 :: Int; T rue :: Bool; id :: 8�:�! �g ` (id 3; id T rue) :: (Int;Bool)Complete the rest of the proof. Also noti
e that the parametri
 polymorphism of id isa
tually being used. Now the rule for letre
.� [ fxi :: �ig ` ei :: �i � [ fxi :: �ig ` e :: � �i = 8�1 : : : �n�i �i =2 FV (�)� ` letre
 xi = ei in e :: � (letre
)Read this rule as follows: Assuming a monomorphi
 type �i for xi, suppose we 
an judgethat ei too has the same type �i. Further, assuming that xi has the polymorphi
 type �i,where �i is an appropriate generalization of �i, suppose we 
an show that e has the type �.Then the entire letre
 expression too has the type �.5 An Algorithm for type inferen
ingWe shall now des
ribe a type inferen
ing algorithm for Milner's language. Re
all that the typeinferen
e problem is: Given a program M , �nd a type � su
h that M :: �. To explain thetype inferen
ing algorithm, we �rst need to explain uni�
ation. We shall therefore make abrief detour to present the uni�
ation algorithm.To see why uni�
ation is needed, 
onsider on
e again the des
ription of the letre
 rule {Assuming a monomorphi
 type �i for xi, if we 
an show that ei too has the type �i . . . . Thework of guessing the right type �i for xi, whi
h would seem to require an ora
le, is a
tuallydone by uni�
ation.5.1 Uni�
ationA term1 is either a 
onstant (denoted by a, b, 
 . . . ), a variable (denoted by x, y, z . . . )or an entity of the form f(t1; t2; : : : tn) where f is a n-ary fun
tion symbol (other fun
tionsymbols will be denoted by g, h) and ea
h ti is a term. In the spe
i�
 
ontext of type 
he
king,terms are made of type variables (�, �) and type 
onstants (Int, Bool), and the role offun
tion symbols is played by type 
onstru
tors like ! and List. So example of a term is(a! b! b)! b! List a! b.2.On
e again, a substitution is a pair 
onsisting of a variable x and a term t, and is denotedby x=t. A substitution list � is a set of su
h substitutions fx1=t1 : : : xn=tng. A substitutionlist � applied to a term t, denoted by � t, involves simultaneous substitution of the variablesx1 . . . xn, if they o

ur in t, by the 
orresponding type expressions ti . . . tn. For example if� = fx=h(d); y=dg and t = f(x; g(y); 
), then � t = f(h(d); g(d); 
).1Here we are talking about terms in general, and not ne
essarily in the sense used earlier.2Here we are using ! in a in�x fashion in 
ontrast to the general des
ription of terms where fun
tion symbols(like f) were shown as being pre�x. 11



If � is a substitution list and t1 and t2 are terms su
h that � t1 = � t2, then � is 
alled anuni�er of t1 and t2. For example, fx=a; y=
; z=b; w=
g is an uni�er of f(x; b; y) and f(a; z; w).A uni�er � for a pair of terms is also a most general uni�er (mgu), if for any other uni�er�1 for the same terms, there exists a substitution list � su
h that �1 = � �, where � � is anobvious extension of appli
ation of a substitution to another substitution list instead of a term.fx=a; y=w; z=bg is a mgu of the terms f(x; b; y) and f(a; z; w).The Uni�
ation AlgorithmInput: Two terms t1 and t2.Output: The mgu, if it exists, else an error message1. mgu = fg; ws = f< t1; t2 >g2. While ws is not empty do(a) Remove a pair f< t; t0 >g from ws.(b) Consider the following 
ases:
ase 1. If t and t0 are identi
al variables or 
onstants, do nothing.
ase 2. If t is a variable not o

urring in t0Repla
e all terms t00 in ws and in mgu by ft=t0g t00.mgu = mgu [ f< t; t0 >g
ase 3. If t0 is a variable not o

urring in tRepla
e all terms t00 in ws and in mgu by ft0=tg t00.mgu = mgu [ f< t0; t >g
ase 4. if t = f(t11; : : : t1n) and t0 = f(t011; : : : t01n), thenws = ws [ f< t11; t01n > : : : < t11; t01n >g.
ase 5. Raise an error.We now give some examples to illustrate the uni�
ation algorithm.Example 1: Unify f(g(x); h(b; g(h(
; d))); y) and f(g(h(w; y)); x; g(z)).We show below the values of the variables mgu and ws for ea
h iteration of the while loop.Iteration 1: mgu = fgws = f< f(g(x); h(b; g(h(
; d))); y), f(g(h(w; y)); x; g(z)) >gIteration 2: mgu = fgws = f< g(x); g(h(w; y)) >; < h(b; g(h(
; d))); x) >; < y; g(z) >gIteration 3: mgu = fgws = f< x; h(w; y) >; < h(b; g(h(
; d))); x) >; < y; g(z) >gIteration 4: mgu = f< x; h(w; y) >gws = f< h(b; g(h(
; d))); h(w; y)) >; < y; g(z) >g12



Iteration 5: mgu = f< x; h(w; y) >gws = f< b; w >;< g(h(
; d)); y >; < y; g(z) >gIteration 6: mgu = f< x; h(b; y) >; < w; b >gws = f< g(h(
; d)); y >; < y; g(z) >gIteration 7: mgu = f< x; h(b; g(h(
; d))) >; < w; b >; < y; g(h(
; d)) >gws = f< g(h(
; d)); g(z) >gIteration 8: mgu = f< x; h(b; g(h(
; d))) >; < w; b >; < y; g(h(
; d)) >gws = f< h(
; d); z >gIteration 9: mgu = f< x; h(b; g(h(
; d))) >; < w; b >; < y; g(h(
; d)) >; < z; h(
; d) >gws = fg5.2 The algorithm:Given a term to be type 
he
ked, various inputs that the algorithm requires and the outputsthat it produ
es are given by the following diagram:- --term t to be type
he
ked� �
�0Here � is 
alled the type environment and plays the same role as type assumptions in thetype system des
ribed earlier. The type 
he
ker takes a term t and a type environment � andprodu
es as output the type � of t and a modi�ed environment �0. TWe now present the algorithm by a 
ase analysis on the stru
ture of the term. For ea
h
ase the details of the algorithm will be presented through a diagram and some 
omments.Case 1: t is a variable x- --x� � [�1=�1; : : : �n=�n℄; �1; : : : �n 6 2�

� x = 8�1; : : : �n � � �
13



Here �1; : : : ; �n are fresh variables. The rule says that the type of a variable is found bylooking into the environment. The reason for monomorphising the type of x is that we tryto �nd the type of a variable only in the 
ontext of an appli
ation, and our appli
ation ismonomorphi
.Case 2: t is a lambda abstra
tion �x:e
---- --e� [ (x : �)� 6 2�� ��0

�x �1 ! �
�0�0x = �1To �nd the type of �x:e in an environment �,1. type
he
k e in an environment � augmented with an assumed type � for x. Assume thatthe result is a type � and a 
hanged environment �0.2. Let the (re�ned) type of x in �0 be �1.3. The type of �x:e is �1 ! � and the �nal environment is �0.Case 3: t is an appli
ation (e1 e2)

����####### 






- -- � -- --�
e1 e2� �1�1 �1 �2�2 � �2

�4

unify (�1; �2 ! �) = � and � �1 = �3 ! �4This rule is to be read as:1. Type
he
k e1 with the initial environment �. Let the result be �1 and �1.14



2. Type
he
k e2 with the environment �1. Let the result be �2 and �2.3. Unify �1 and �2 ! �. Assume that the uni�er is �. And the uni�ed term (� �1) is �3 ! �4.4. Then the type of the appli
ation is �4 and the modi�ed environment is � �2.Case 4: t is a let expression let x = e1 in e
�������� llllll..........................�� - 6 - -

-
- --����

-=x ee1 �2 �3 � fx :: g�3�3�2� �1�1
�3

� = 8�1 : : : �n � �1; �1 : : : �n 2 �1; �1 : : : �n 62��2 = �1 [ (x : �)

let

To type
he
k let x = e1 in e in the environment �,1. Type
he
k e1 in the environment � resulting in a type �1 and a modi�ed environment �12. Let � be an appropriate polymorphi
 form of �1 and �2 be �1 augmented with the typeof x as �.3. Type
he
k e in the environment �2 resulting in a type �3 and a modi�ed environment�3.4. The type of the let expression is �3, and the modi�ed environment is �3 with the type ofx deleted.Case 5: t is a letre
 expression letre
 x = e1 in e
15



����bbbb��� """""""""" JJJJJJJJJ- - - .6
-- --

-
-� [ (x :: �)�

letre

= e1 e �3�3�2�2�1�1

�3
�3 � fx :: g

�2 = �1 x, � = unify (�1; �2); � 0 = � �1� = 8�1 : : : �n � � 0; �1; : : : ; �n 2 � 0; �1; : : : ; �n 62��2 = (� �1) [ (x : �)

x

The above rule is to be read as follows. To type
he
k letre
 x = e1 in e in the environment�, 1. Type
he
k e1 in the environment � augmented with a type assumption � for the variablex. Assume that this results in a type �1 and a modi�ed environment �12. Let �2 be the re�ned type of x in �1. Unify this with the type �1 of e1. Let the uni�erbe � and the uni�ed type be � 0.3. Let � be an appropriate polymorphi
 form of � 0. Also let �2 be �1 modi�ed taking theuni�
ation pro
ess into a

ount and further augmented with the type of x as �.4. Type
he
k e in the environment �2 resulting in a type �3 and a modi�ed environment�3.5. The type of the let expression is �3, and the modi�ed environment is �3 with the type ofx deleted.
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