
Notes on Type ClassesAuthor: Amitabha SanyalApril 6, 20051 IntrodutionConsider the funtion member de�ned asmember x [℄ = Falsemember x (y:ys) = (x == y) || member x ysQuestion: What is the type of member? First guess { a -> [a℄ -> BoolBut then we should be able to all member as member f [sin, os, tan℄. Clearly thisis inorret beause it requires member to hek whether two funtions are equal. A moreaurate desription of the type of member is { member :: a -> [a℄ -> Bool for only thosetypes a whose members an be ompared for equality. The language of type expressions isextended to express suh a type.member :: (Eq a) => a -> [a℄ -> BoolTo do this we must do two things:1. Delare a lass alled Eq. Any type belonging to this lass should have an operator ==de�ned on values of that lass. This is done as:lass (Eq a) where(==) :: a -> a -> BoolThis is alled a lass delaration.2. After having delared the lass alled Eq, we must populate it with types. This is donewith an instane delaration:instane Eq Int where(==) = primEqInt // primEqInt is a primitive1

instane Eq Char where(==) = primEqCharNow suppose we also wanted to add the type [a℄ to Eq. Surely this will require the type ato be in Eq. Thus the instane delaration for [a℄ isinstane (Eq a) => Eq [a℄ where(==) [℄ [℄ = True(==) (x:xs) (y:ys) = (x == y) && (xs == ys)(==) _ _ = FalseThe entity (Eq a) in instane (Eq a) => Eq [a℄ (and elsewhere) is alled a ontext.Every entry in a ontext pairs a lass name with a lass variable. Now the funtionpalindrome xs = (xs == reverse xs)is typed as palindrome :: (Eq a) => [a℄ -> Bool and not (Eq [a℄) => [a℄ -> BoolWe ould also extend the lass Eq a with a default de�nition of \=.lass (Eq a) where(==) :: a -> a -> Bool(/=) :: a -> a -> Bool(/=) x y = not(x == y)2 SuperlassesNow let us introdue a lass alled Ord de�ned aslass (Eq a) => (Ord a) where(<) :: a -> a -> Bool(<=) :: a -> a -> BoolWe ould make Int an instane of Ord as followsinstane Ord Int where(<) = primLtInt(<=) = primLeIntNow, insearh x [℄ = Falsesearh x (y:ys) = x == y || x > y && searh x ysThe type of searh is (Ord a) => a -> [a℄ -> Bool and not (Eq a, Ord a) => a ->[a℄ -> Bool 2

3 Implementing lassesA ditionary is a tuple whih ontains:1. The ditionary of its immediate superlasses.2. The atual funtion names whih implement the operators of the lass.We denote as ditEqInt the ditionary of the Int instane of Eq. Further, if we denote theInt instane of == as ==Int, then ditEqInt = < ==Int, /=Int >. The ditionary is reatedfrom the instane delaration. Similarly, ditOrdInt = < ditEqInt, >Int, >=Int >. Nowthe idea is that the overloaded funtionf x y = ... x == y ...is rewritten asf x y dEq = 'selet the operator == from dEq and apply it on x and y'.and the two alls to it...f 1 2...f '3' '4'are rewritten as...f 1 2 ditEqInt...f '3' '4' ditEqCharTo selet the right operator, we de�ne the overloaded operator (==) appearing in the bodyof f as \dEq -> projet11 dEq. Then the translation of f x y beomesf x y dEq = (==) dEq x yLet us see how this works in the ase of f 1 2f 1 2 ditEqInt=> (==) ditEqInt 1 2=> ==Int 1 2=> FalseSimilarly 3

f '3' '4' ditEqChar=> (==) ditEqChar '3' '4'=> projet11 < ==Char, /=Char > '3' '4'=> ==Char '3' '4'=> FalseThe type of f is (Eq a) => a -> a -> Bool. There are two readings of this type expression:1. f is a -> a -> Bool for all a in lass Eq.2. f needs a ditionary for overloading resolutiuon. f an be implemented if it is providedwith a ditionary of the type Eq. The reading beomes apparent in the translation.For the Ord translation, we have the ditionary <ditEqX, >X, >=X > for a type X. Furtherwe have the seletors(>) = \dOrd -> projet32 dOrd(>=) = \dOrd -> projet33 dOrdgetEqfromOrd = \dOrd -> projet31 dOrdso that that the translation ofg x y = x > y || x == ywill beg x y dOrd = (> dOrd x y) || (==) (getEqfromOrd dOrd) x yAnother example:searh x ys = not (null ys) &&(x == head ys ||x < head ys && searh x (tail ys))searh :: (Ord a) => a -> [a℄ -> Booltranslates tosearh x ys dOrd = not(null ys) &&(==(getEqfromOrd) x (head ys) ||< dOrd (head ys) && searh x (tail ys) dOrd)Last example:instane (Eq a) => Eq [a℄ where(==) xs ys = (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&4

head xs == head ys &&tail xs == tail ysA ditionary for [a℄ an be produed, provided a ditionary for a is supplied.ditEqList dEq = < \xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) dEq (head xs) (head ys) &&(==) (ditEqList dEq) (tail xs) (tail ys) >One again onsiderf x y = ... x == y ...f x y dEq = (==) dEq x yThereforef [1,2℄ [3,4℄rewrites tof [1,2℄ [3,4℄ (ditEqList ditEqInt)=> (==) (ditEqList ditEqInt) [1,2℄ [3,4℄=> (==) <\xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) dEq (head xs) (head ys) &&(==) (ditEqList dEq) (tail xs) (tail ys) > [1,2℄ [3,4℄=> (\xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) ditEqInt (head xs) (head ys) &&(==) (ditEqList ditEqInt) (tail xs) (tail ys)) [1,2℄ [3,4℄=> (==) ditEqInt 1 3 &&(==) (ditEqList ditEqInt) [2℄ [4℄=> (==Int) 1 3 && (==) (ditEqList ditEqInt) [2℄ [4℄=> False
5

4 Numeri Classes in Haskell

properFraction
approxRational

div, rem
mod, toInteger

toRational

show, showsprec

+, −, abs, fromInteger

/, fromRational

sqrt, sin
exp, log

exponent,
significand

Ord

Eq

Real

Num

Show

Integral RealFrac Floating

Fractional

Realfloat
Integer
Int

Float
Double

Complex aRatio a

Number literalsintegerLiteral ! digit fdigitgfloatLiteral ! integerLiteral : integerLiteral[e [�℄ integerLiteral℄Construted numbers:data (Integral a) => Ratio a = a :% adata (RealFloat a) => Complex a = a :+ atype Rational = Ratio Integera 2 Num1. Basi arithmeti operations +, -, abs.2. a should be obtainable from an Integer.Num does not need to be under Ord sine omplex types annot be ompared.a 2 Frational1. Represents the non-integral types. Should support general division (/)2. a should be obtainable from an Rational. (fromRational)a 2 Floating1. Contains all oating point types, both real and omplex. Should support oating pointoperations exp, log, sqrt, sin, os, sinh, osh.a 2 Real1. Contains all numeri types a whih have an order. Also, should support a funtiontoRational to onvert a to a Rational without loss of preision.6

toRational 45.3 = 11875123 % 262144a 2 Integral1. Should support basi integer operations div, rem, mod.2. a should be approximable to a Integer (without loss of preision).a 2 RealFra1. Should support funtions properFra, approxRational.properFration 45.3 = (45,0.299999)approxRational 45.3 0.1 = 136 % 3approxRational 45.3 0.01 = 453 % 10approxRational 45.3 0.000001 = 11875123 % 262144approxRational 45.3 0.000000001 = 11875123 % 262144a 2 RealFloat1. Should support general division and funtions like exponent, signifiant.exponent 45.3 = 6signifiand 45.3 = 0.7078125 Overloading in Numeri ClassesHaskell allows the literal 7 to be regarded as any of Int, Integer, Float, Double, Complexor Ratio.Similarly 3.4 an be regarded as any of Float, Double, Complex or Ratio.What 7 really is depends on the ontextval :: Integerval = 4 + 7 Here both 4 and 7 are Integers.val :: Floatval = 4 + 7 Here both 4 and 7 are Floats.The ompiler rewrites 7 as fromInteger 7 and 3.4 as fromRational 3.4, wherefromInteger :: (Num a) => Integer -> a, andfromRational :: (Frational a) => Rational -> a,In other words, fromInteger 7 provides a way of regarding the numeral 7 of the typeInteger as any numeri type. Similarly, fromRational 3.4 provides a way of regarding theRational numeral 3.4 as any non-Integral numeri type.7

Eah type de�nes its own instane of fromInteger:Type InstaneInt fromInteger = primIntegertoIntInteger fromInteger x = xRatio a fromInteger x = fromInteger x :% 1Complex a fromInteger x = fromInteger x :+ 1Double, Float fromInteger = enodeFloat xSimilarlyType InstaneRatio a fromRational (x :% y) = fromRational x :% fromRational yComplex a fromRational x = fromInteger x :+ 1Double, Float fromRational = rationaltoFloating6 Unresolved Overloading and DefaultsWe shall study a series of examples1. 2 rewrites to (fromInteger 2).fromInteger :: (Num a) => Integer -> a2 :: IntegerfromInteger 2 :: (Num a) => atranslation \dNuma -> (fromInteger dNuma 2)If this is the entire program then there is no ontext to resolve the overloading. Ambiguitiesin the lass Num are very ommon, so Haskell provides a way to resolve them|with a defaultdelaration:default (t1 , ... , tn)where n � 0 , and eah ti must be a monotype for whih Num ti holds. Eah ambiguous typevariable is replaed by the �rst type in the default list that is an instane of all the ambiguousvariable's lasses.Only one default delaration is permitted per module, and its e�et is limited to that module.If no default delaration is given in a module then it assumed to be:default (Integer, Double)In other words:(\dNuma -> (fromInteger dNuma 2) ditNumInteger= fromInteger ditNumInteger 2= fromIntegerInteger 2 8

2. 5.7 :: (Frational a) => aThis rewrites to:\dFrational a -> (fromRational dFrationala 57 :% 10)After overloading resolution this rewrites to:fromRationalDouble 57 :% 103. len1 l = if (l == [℄) then 0 else 1 + len1 (tail l)len1 :: (Eq a, Num b) => [a℄ -> bThe translation of len1 is:len1 dEqa dNumb l = if (== (ditEqList dEqa) l [℄)then fromInteger dNumb 0else (+ dNumb) 1 (len1 dEqa dNumb (tail l))Now onsider the appliation of len1 [1,2,3℄. [1,2,3℄ has the type (Num) => [℄ andrewrites to:\dNum [fromInteger dNum 1, fromInteger dNum 2, fromInteger dNum 3℄Igonring the ontext:[1,2,3℄ :: [℄, andlen1 :: (Eq a, Num b) => [a℄ -> buni�ation would give / a. Therefore the type of len1 [1,2,3℄ is (Eq a, Num a, Numb) => b, and the translation is:\dEqa \dNuma \dNumb -> (len1 dEqa dNumb) [fromInteger dNuma 1, fromInteger dNuma2, fromInteger dNuma 3℄But we an derive a Eq ditionary from a Num ditionary. Therefore,len1 [1,2,3℄ :: (Num a, Num b) => b, and its translation is:\dNuma \dNumb -> (len1 (getEqfromNum dNuma) dNumb) [fromInteger dNuma 1,fromInteger dNuma 2, fromInteger dNuma 3℄The default delaration gives a and b as Integer. Therefore, we have:len1 ditEqInteger ditNumInteger [1Integer, 2Integer, 3Integer,℄What happens in the ase of len1 [℄? Sine [℄ :: [℄,len1 [℄ :: (Eq a, Num b) => b, and translates to\dEqa \dNumb (len1 dEqa dNumb) [℄default delaration gives\dEqa (len1 dEqa ditNumInteger) [℄ :: (Eq a) => IntegerTop level unresolved overloading. 9

4. len2 [℄ = 0len2 (x:xs) = 1 + len1 xslen2 :: Num b => [a℄ -> blen2 [℄ :: Num b => bbeause of default delarations, this resolves tolen2 [℄ :: Integer5. funny l = if (l == [1℄) then head l else 1 + funny (tail l)funny :: (Num a) => [a℄ -> a6. funnier l = if (l == [1℄) then 1 else 1 + funnier (tail l)funnier :: (Num a, Num b) => [a℄ -> b7. funniest x = 1 + funny [℄funniest :: Num b => -> b8. read :: (Read a) => String -> aread "2.0" :: (Read a) => a -- top level unresolved overloadingread "2.0" + 3.0 :: (Frational a, Read a) => adefault rewrites to Double9. show :: (Show a) => a -> Stringshow (2+2) :: (Show a, Num a) => Stringdefault rewrites to String10. show (read "123") :: (Show a, Read a) => Stringtop level unresolved overloading
10

