Notes on Type Classes

Author: Amitabha Sanyal
April 6, 2005

1 Introduction

Consider the function member defined as

member x [] = False
member x (y:ys) = (x == y) || member x ys

Question: What is the type of member? First guess —a -> [a] -> Bool

But then we should be able to call member as member f [sin, cos, tan]. Clearly this
is incorrect because it requires member to check whether two functions are equal. A more
accurate description of the type of member is —member :: a -> [al -> Bool for only those
types a whose members can be compared for equality. The language of type expressions is
extended to express such a type.

member :: (Eq a) => a -> [a] -> Bool
To do this we must do two things:
1. Declare a class called Eq. Any type belonging to this class should have an operator ==

defined on values of that class. This is done as:

class (Eq a) where
(==) :: a -> a -> Bool
This is called a class declaration.
2. After having declared the class called Eq, we must populate it with types. This is done

with an instance declaration:

instance Eq Int where
(==) = primEqInt // primEqInt is a primitive

instance Eq Char where
(==) = primEqChar

Now suppose we also wanted to add the type [a] to Eq. Surely this will require the type a
to be in Eq. Thus the instance declaration for [a] is

instance (Eq a) => Eq [a] where

==) [0 [1 = True
(==) (x:x8) (y:ys) = (x ==y) && (xs == ys)
(==) _ _ = False

The entity (Eq a) in instance (Eq a) => Eq [a] (and elsewhere) is called a context.
Every entry in a context pairs a class name with a class variable. Now the function

palindrome xs = (xs == reverse xs)

is typed as palindrome :: (Eq a) => [a]l -> Bool and not (Eq [a]) => [a]l -> Bool
We could also extend the class Eq a with a default definition of \=.

class (Eq a) where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
(/=) x y = not(x == y)

2 Superclasses

Now let us introduce a class called 0rd defined as

class (Eq a) => (Ord a) where
(<) :: a ->a -> Bool
(=) :: a -> a -> Bool

We could make Int an instance of Ord as follows

instance Ord Int where
(<) = primLtInt
(<=) = primLelnt

Now, in

search x [] = False
search x (y:ys) = x ==y || x >y && search x ys

The type of search is (Ord a) => a -> [a] -> Bool and not (Eq a, Ord a) => a ->
[a] -> Bool

3 Implementing classes

A dictionary is a tuple which contains:
1. The dictionary of its immediate superclasses.
2. The actual function names which implement the operators of the class.

We denote as dictEqInt the dictionary of the Int instance of Eq. Further, if we denote the
Int instance of == as ==q,;, then dictEqInt = < ==, /=1 >. The dictionary is created
from the instance declaration. Similarly, dictOrdInt = < dictEqInt, >, >=mp¢ >. Now
the idea is that the overloaded function

fxy=... x=y3 ...

is rewritten as
f x y dEq = ’select the operator == from dEq and apply it on x and y’.

and the two calls to it
f12
f) 3)) 4)

are rewritten as

f 1 2 dictEqlInt
f ’3’ ’4’ dictEqChar

To select the right operator, we define the overloaded operator (==) appearing in the body
of f as \dEq -> project] dEq. Then the translation of f x y becomes

f x ydEq = (==) dEq x ¥y

Let us see how this works in the case of £ 1 2
f 1 2 dictEqlInt
=> (==) dictEqInt 1 2
=> ==Int 1 2
=> False

Similarly

f ’3’ ’4’ dictEqChar

=> (==) dictEqChar ’3’ ’4’

=> project} < ==¢pay, /Zchar > '3’ 4’
=> ==gpar '3 4

=> False

The type of fis (Eq a) => a -> a -> Bool. There are two readings of this type expression:

1. fisa -> a -> Bool for all a in class Eq.

2. f needs a dictionary for overloading resolutiuon. f can be implemented if it is provided
with a dictionary of the type Eq. The reading becomes apparent in the translation.

For the Ord translation, we have the dictionary <dictEqX, >x, >=x > for a type X. Further
we have the selectors

(>) = \dOrd -> project} dOrd

(>=) = \dOrd -> project; dOrd

getEqfromOrd = \dOrd -> project} dOrd

so that that the translation of
gxy=x>yll x==y
will be
g x ydord = (> d0rd x y) || (==) (getEqfromOrd dOrd) x y

Another example:

search x ys = not (null ys) &&

(x == head ys ||

x < head ys && search x (tail ys))
search :: (0Ord a) => a -> [a] -> Bool

translates to

search x ys dOrd = not(null ys) &&
(==(getEqfromOrd) x (head ys) ||
< dOrd (head ys) && search x (tail ys) dOrd)

Last example:

instance (Eq a) => Eq [a] where

(==) xs ys = (null xs) && (null ys) ||
(not(null xs) && not(null ys)) &&

4

head xs == head ys &&
tail xs == tail ys

A dictionary for [al] can be produced, provided a dictionary for a is supplied.

dictEqList dEq = < \xs ys -> (null xs) && (null ys) ||
(not(null xs) && not(null ys)) &&
(==) dEq (head xs) (head ys) &&
(==) (dictEqList dEq) (tail xs) (tail ys) >

Once again consider

fxy= ... x

1]
]
<

f x y dEq = (==) dEq x y
Therefore

f [1,2] [3,4]
rewrites to

f [1,2] [3,4] (dictEqList dictEqInt)
=> (==) (dictEqList dictEqInt) [1,2] [3,4]
=> (==) <\xs ys -> (null xs) && (null ys) ||
(not(null xs) && not(null ys)) &&
(==) dEq (head xs) (head ys) &&
(==) (dictEqList dEq) (tail xs) (tail ys) > [1,2] [3,4]
=> (\xs ys -> (null xs) && (null ys) ||
(not(null xs) && not(null ys)) &&
(==) dictEqInt (head xs) (head ys) &&
(==) (dictEqList dictEqInt) (tail xs) (tail ys)) [1,2] [3,4]
=> (==) dictEqInt 1 3 &&
(==) (dictEqList dictEqInt) [2] [4]
=> (==Int) 1 3 && (==) (dictEqlList dictEqInt) [2] [4]
=> False

4 Numeric Classes in Haskell

/Eq\ Show |show, showsprec
Ord /Nurr{ﬁ—, abs, fromIntegdr
eal \Fractional |/, fromRational |
div, rem / \ / \ .
mod, tolnteger I ntegral RealFrac Floating gé?t IS?I%
| nt eger Rat i h\ /Con’pl ex a :
| nt properkraction Reéalfloat

approxRational

Fl oat exponent,
Doubl e [significand

Number literals
integer Literal — digit {digit}
floatLiteral — integer Literal . integer Literal[e [—] integer Literal]

Constructed numbers:
data (Integral a) => Ratio a = a :% a
data (RealFloat a) => Complex a = a :+ a
type Rational = Ratio Integer

a € Num
1. Basic arithmetic operations +, -, abs.
2. a should be obtainable from an Integer.
Num does not need to be under 0rd since complex types cannot be compared.
a € Fractional
1. Represents the non-integral types. Should support general division (/)
2. a should be obtainable from an Rational. (fromRational)
a € Floating

1. Contains all floating point types, both real and complex. Should support floating point
operations exp, log, sqrt, sin, cos, sinh, cosh.

a € Real

1. Contains all numeric types a which have an order. Also, should support a function
toRational to convert a to a Rational without loss of precision.

toRational 45.3 = 11875123 ¥, 262144
a € Integral

1. Should support basic integer operations div, rem, mod.

2. a should be approximable to a Integer (without loss of precision).
a € RealFrac

1. Should support functions properFrac, approxRational.

properFraction 45.3 = (45,0.299999)
approxRational 45.3 0.1 = 136 % 3

approxRational 45.3 0.01 = 453 7 10

approxRational 45.3 0.000001 = 11875123 7% 262144
approxRational 45.3 0.000000001 = 11875123 %, 262144

a € RealFloat
1. Should support general division and functions like exponent, significant.

exponent 45.3 = 6
significand 45.3 = 0.707812

5 Overloading in Numeric Classes

Haskell allows the literal 7 to be regarded as any of Int, Integer, Float, Double, Complex
or Ratio.

Similarly 3.4 can be regarded as any of Float, Double, Complex or Ratio.

What 7 really is depends on the context

val :: Integer

val = 4 + 7 Here both 4 and 7 are Integers.
val :: Float

val =4 + 7 Here both 4 and 7 are Floats.

The compiler rewrites 7 as fromInteger 7 and 3.4 as fromRational 3.4, where

fromInteger :: (Num a) => Integer -> a, and
fromRational :: (Fractional a) => Rational -> a,

In other words, fromInteger 7 provides a way of regarding the numeral 7 of the type
Integer as any numeric type. Similarly, fromRational 3.4 provides a way of regarding the
Rational numeral 3.4 as any non-Integral numeric type.

7

Each type defines its own instance of fromInteger:

Type Instance
Int fromInteger = primIntegertolnt
Integer fromInteger x = x
Ratio a fromInteger x = fromInteger x :% 1
Complex a fromInteger x = fromInteger x :+ 1
Double, Float fromInteger = encodeFloat x
Similarly
Type Instance
Ratio a fromRational (x :% y) = fromRational x :% fromRational y
Complex a fromRational x = fromInteger x :+ 1
Double, Float fromRational = rationaltoFloating

6 Unresolved Overloading and Defaults
We shall study a series of examples

1. 2 rewrites to (fromInteger 2).

fromInteger :: (Num a) => Integer -> a
2 :: Integer

fromInteger 2 :: (Num a) => a

translation \dNuma -> (fromInteger dNuma 2)

If this is the entire program then there is no context to resolve the overloading. Ambiguities
in the class Num are very common, so Haskell provides a way to resolve them—with a default
declaration:

default (¢ , ... , tp)

where n > 0, and each #; must be a monotype for which Num ¢; holds. Each ambiguous type
variable is replaced by the first type in the default list that is an instance of all the ambiguous
variable’s classes.

Only one default declaration is permitted per module, and its effect is limited to that module.
If no default declaration is given in a module then it assumed to be:

default (Integer, Double)
In other words:

(\dNuma -> (fromInteger dNuma 2) dictNumInteger
= fromInteger dictNumInteger 2
= fromIntegerInteger 2

2. 5.7 :: (Fractional a) => a
This rewrites to:
\dFractional a -> (fromRational dFractionala 57 :% 10)
After overloading resolution this rewrites to:
fromRationalpoypie 57 :% 10
3. lenl 1 = if (1 == []) then O else 1 + lenl (tail 1)
lenl :: (Eq a, Num b) => [a] -> b

The translation of lenl is:

lenl dEqa dNumb 1 = if (== (dictEqList dEqa) 1 [])
then fromInteger dNumb O
else (+ dNumb) 1 (lenl dEqga dNumb (tail 1))

Now consider the application of 1len1 [1,2,3]. [1,2,3] has the type (Num ¢) => [c] and
rewrites to:

\dNumc [fromInteger dNumc 1, fromInteger dNumc 2, fromInteger dNumc 3]
Igonring the context:

[1,2,3] :: [c], and
lenl :: (Eq a, Num b) => [a] -> b

unification would give ¢ / a. Therefore the type of 1lenl [1,2,3] is (Eq a, Num a, Num
b) => b, and the translation is:

\dEga \dNuma \dNumb -> (lenl dEga dNumb) [fromInteger dNuma 1, fromInteger dNuma
2, fromInteger dNuma 3]

But we can derive a Eq dictionary from a Num dictionary. Therefore,
lenl [1,2,3] :: (Num a, Num b) => b, and its translation is:

\dNuma \dNumb -> (lenl (getEqfromNum dNuma) dNumb) [fromInteger dNuma 1,
fromInteger dNuma 2, fromInteger dNuma 3]

The default declaration gives a and b as Integer. Therefore, we have:
lenl dictEqInteger dictNumInteger [lintegers 2Integer» SInteger sl
What happens in the case of 1len1 [17 Since [1 :: [cl,

lenl [1 :: (Eq a, Num b) => b, and translates to

\dEga \dNumb (leni dEqa dNumb) []

default declaration gives

\dEga (lenl dEqa dictNumInteger) [1 :: (Eq a) => Integer

Top level unresolved overloading.

10.

len2 [1] =0
len2 (x:xs8) =1 + lenl xs

len2 :: Num b => [a] -> b
len2 [] :: Num b => b

because of default declarations, this resolves to

len2 [] :: Integer

funny 1 = if (1 == [1]) then head 1 else 1 + funny (tail 1)
funny :: (Num a) => [a] -> a

funnier 1 = if (1 == [1]) then 1 else 1 + funnier (tail 1)
funnier :: (Num a, Num b) => [a] -> b

funniest x = 1 + funny []

funniest :: Num b => ¢ > b

read :: (Read a) => String -> a

read "2.0" :: (Read a) => a -- top level unresolved overloading
read "2.0" + 3.0 :: (Fractional a, Read a) => a

default rewrites to Double

show :: (Show a) => a -> String
show (2+2) :: (Show a, Num a) => String

default rewrites to String

show (read "123") :: (Show a, Read a) => String

top level unresolved overloading

10

