
Notes on Type ClassesAuthor: Amitabha SanyalApril 6, 20051 Introdu
tionConsider the fun
tion member de�ned asmember x [℄ = Falsemember x (y:ys) = (x == y) || member x ysQuestion: What is the type of member? First guess { a -> [a℄ -> BoolBut then we should be able to 
all member as member f [sin, 
os, tan℄. Clearly thisis in
orre
t be
ause it requires member to 
he
k whether two fun
tions are equal. A morea

urate des
ription of the type of member is { member :: a -> [a℄ -> Bool for only thosetypes a whose members 
an be 
ompared for equality. The language of type expressions isextended to express su
h a type.member :: (Eq a) => a -> [a℄ -> BoolTo do this we must do two things:1. De
lare a 
lass 
alled Eq. Any type belonging to this 
lass should have an operator ==de�ned on values of that 
lass. This is done as:
lass (Eq a) where(==) :: a -> a -> BoolThis is 
alled a 
lass de
laration.2. After having de
lared the 
lass 
alled Eq, we must populate it with types. This is donewith an instan
e de
laration:instan
e Eq Int where(==) = primEqInt // primEqInt is a primitive1



instan
e Eq Char where(==) = primEqCharNow suppose we also wanted to add the type [a℄ to Eq. Surely this will require the type ato be in Eq. Thus the instan
e de
laration for [a℄ isinstan
e (Eq a) => Eq [a℄ where(==) [℄ [℄ = True(==) (x:xs) (y:ys) = (x == y) && (xs == ys)(==) _ _ = FalseThe entity (Eq a) in instan
e (Eq a) => Eq [a℄ (and elsewhere) is 
alled a 
ontext.Every entry in a 
ontext pairs a 
lass name with a 
lass variable. Now the fun
tionpalindrome xs = (xs == reverse xs)is typed as palindrome :: (Eq a) => [a℄ -> Bool and not (Eq [a℄) => [a℄ -> BoolWe 
ould also extend the 
lass Eq a with a default de�nition of \=.
lass (Eq a) where(==) :: a -> a -> Bool(/=) :: a -> a -> Bool(/=) x y = not(x == y)2 Super
lassesNow let us introdu
e a 
lass 
alled Ord de�ned as
lass (Eq a) => (Ord a) where(<) :: a -> a -> Bool(<=) :: a -> a -> BoolWe 
ould make Int an instan
e of Ord as followsinstan
e Ord Int where(<) = primLtInt(<=) = primLeIntNow, insear
h x [℄ = Falsesear
h x (y:ys) = x == y || x > y && sear
h x ysThe type of sear
h is (Ord a) => a -> [a℄ -> Bool and not (Eq a, Ord a) => a ->[a℄ -> Bool 2



3 Implementing 
lassesA di
tionary is a tuple whi
h 
ontains:1. The di
tionary of its immediate super
lasses.2. The a
tual fun
tion names whi
h implement the operators of the 
lass.We denote as di
tEqInt the di
tionary of the Int instan
e of Eq. Further, if we denote theInt instan
e of == as ==Int, then di
tEqInt = < ==Int, /=Int >. The di
tionary is 
reatedfrom the instan
e de
laration. Similarly, di
tOrdInt = < di
tEqInt, >Int, >=Int >. Nowthe idea is that the overloaded fun
tionf x y = ... x == y ...is rewritten asf x y dEq = 'sele
t the operator == from dEq and apply it on x and y'.and the two 
alls to it...f 1 2...f '3' '4'are rewritten as...f 1 2 di
tEqInt...f '3' '4' di
tEqCharTo sele
t the right operator, we de�ne the overloaded operator (==) appearing in the bodyof f as \dEq -> proje
t11 dEq. Then the translation of f x y be
omesf x y dEq = (==) dEq x yLet us see how this works in the 
ase of f 1 2f 1 2 di
tEqInt=> (==) di
tEqInt 1 2=> ==Int 1 2=> FalseSimilarly 3



f '3' '4' di
tEqChar=> (==) di
tEqChar '3' '4'=> proje
t11 < ==Char, /=Char > '3' '4'=> ==Char '3' '4'=> FalseThe type of f is (Eq a) => a -> a -> Bool. There are two readings of this type expression:1. f is a -> a -> Bool for all a in 
lass Eq.2. f needs a di
tionary for overloading resolutiuon. f 
an be implemented if it is providedwith a di
tionary of the type Eq. The reading be
omes apparent in the translation.For the Ord translation, we have the di
tionary <di
tEqX, >X, >=X > for a type X. Furtherwe have the sele
tors(>) = \dOrd -> proje
t32 dOrd(>=) = \dOrd -> proje
t33 dOrdgetEqfromOrd = \dOrd -> proje
t31 dOrdso that that the translation ofg x y = x > y || x == ywill beg x y dOrd = (> dOrd x y) || (==) (getEqfromOrd dOrd) x yAnother example:sear
h x ys = not (null ys) &&(x == head ys ||x < head ys && sear
h x (tail ys))sear
h :: (Ord a) => a -> [a℄ -> Booltranslates tosear
h x ys dOrd = not(null ys) &&(==(getEqfromOrd) x (head ys) ||< dOrd (head ys) && sear
h x (tail ys) dOrd)Last example:instan
e (Eq a) => Eq [a℄ where(==) xs ys = (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&4



head xs == head ys &&tail xs == tail ysA di
tionary for [a℄ 
an be produ
ed, provided a di
tionary for a is supplied.di
tEqList dEq = < \xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) dEq (head xs) (head ys) &&(==) (di
tEqList dEq) (tail xs) (tail ys) >On
e again 
onsiderf x y = ... x == y ...f x y dEq = (==) dEq x yThereforef [1,2℄ [3,4℄rewrites tof [1,2℄ [3,4℄ (di
tEqList di
tEqInt)=> (==) (di
tEqList di
tEqInt) [1,2℄ [3,4℄=> (==) <\xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) dEq (head xs) (head ys) &&(==) (di
tEqList dEq) (tail xs) (tail ys) > [1,2℄ [3,4℄=> (\xs ys -> (null xs) && (null ys) ||(not(null xs) && not(null ys)) &&(==) di
tEqInt (head xs) (head ys) &&(==) (di
tEqList di
tEqInt) (tail xs) (tail ys)) [1,2℄ [3,4℄=> (==) di
tEqInt 1 3 &&(==) (di
tEqList di
tEqInt) [2℄ [4℄=> (==Int) 1 3 && (==) (di
tEqList di
tEqInt) [2℄ [4℄=> False
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4 Numeri
 Classes in Haskell

properFraction
approxRational

div, rem 
mod, toInteger

toRational

show, showsprec

+, −, abs, fromInteger

/, fromRational

sqrt, sin
exp, log

exponent,
significand 

Ord

Eq 

Real

Num

Show 

Integral RealFrac Floating

Fractional

Realfloat
Integer
Int

Float 
Double 

Complex aRatio a

Number literalsintegerLiteral ! digit fdigitgfloatLiteral ! integerLiteral : integerLiteral[ e [�℄ integerLiteral℄Constru
ted numbers:data (Integral a) => Ratio a = a :% adata (RealFloat a) => Complex a = a :+ atype Rational = Ratio Integera 2 Num1. Basi
 arithmeti
 operations +, -, abs.2. a should be obtainable from an Integer.Num does not need to be under Ord sin
e 
omplex types 
annot be 
ompared.a 2 Fra
tional1. Represents the non-integral types. Should support general division (/)2. a should be obtainable from an Rational. (fromRational)a 2 Floating1. Contains all 
oating point types, both real and 
omplex. Should support 
oating pointoperations exp, log, sqrt, sin, 
os, sinh, 
osh.a 2 Real1. Contains all numeri
 types a whi
h have an order. Also, should support a fun
tiontoRational to 
onvert a to a Rational without loss of pre
ision.6



toRational 45.3 = 11875123 % 262144a 2 Integral1. Should support basi
 integer operations div, rem, mod.2. a should be approximable to a Integer (without loss of pre
ision).a 2 RealFra
1. Should support fun
tions properFra
, approxRational.properFra
tion 45.3 = (45,0.299999)approxRational 45.3 0.1 = 136 % 3approxRational 45.3 0.01 = 453 % 10approxRational 45.3 0.000001 = 11875123 % 262144approxRational 45.3 0.000000001 = 11875123 % 262144a 2 RealFloat1. Should support general division and fun
tions like exponent, signifi
ant.exponent 45.3 = 6signifi
and 45.3 = 0.7078125 Overloading in Numeri
 ClassesHaskell allows the literal 7 to be regarded as any of Int, Integer, Float, Double, Complexor Ratio.Similarly 3.4 
an be regarded as any of Float, Double, Complex or Ratio.What 7 really is depends on the 
ontextval :: Integerval = 4 + 7 Here both 4 and 7 are Integers.val :: Floatval = 4 + 7 Here both 4 and 7 are Floats.The 
ompiler rewrites 7 as fromInteger 7 and 3.4 as fromRational 3.4, wherefromInteger :: (Num a) => Integer -> a, andfromRational :: (Fra
tional a) => Rational -> a,In other words, fromInteger 7 provides a way of regarding the numeral 7 of the typeInteger as any numeri
 type. Similarly, fromRational 3.4 provides a way of regarding theRational numeral 3.4 as any non-Integral numeri
 type.7



Ea
h type de�nes its own instan
e of fromInteger:Type Instan
eInt fromInteger = primIntegertoIntInteger fromInteger x = xRatio a fromInteger x = fromInteger x :% 1Complex a fromInteger x = fromInteger x :+ 1Double, Float fromInteger = en
odeFloat xSimilarlyType Instan
eRatio a fromRational (x :% y) = fromRational x :% fromRational yComplex a fromRational x = fromInteger x :+ 1Double, Float fromRational = rationaltoFloating6 Unresolved Overloading and DefaultsWe shall study a series of examples1. 2 rewrites to (fromInteger 2).fromInteger :: (Num a) => Integer -> a2 :: IntegerfromInteger 2 :: (Num a) => atranslation \dNuma -> (fromInteger dNuma 2)If this is the entire program then there is no 
ontext to resolve the overloading. Ambiguitiesin the 
lass Num are very 
ommon, so Haskell provides a way to resolve them|with a defaultde
laration:default (t1 , ... , tn)where n � 0 , and ea
h ti must be a monotype for whi
h Num ti holds. Ea
h ambiguous typevariable is repla
ed by the �rst type in the default list that is an instan
e of all the ambiguousvariable's 
lasses.Only one default de
laration is permitted per module, and its e�e
t is limited to that module.If no default de
laration is given in a module then it assumed to be:default (Integer, Double)In other words:(\dNuma -> (fromInteger dNuma 2) di
tNumInteger= fromInteger di
tNumInteger 2= fromIntegerInteger 2 8



2. 5.7 :: (Fra
tional a) => aThis rewrites to:\dFra
tional a -> (fromRational dFra
tionala 57 :% 10)After overloading resolution this rewrites to:fromRationalDouble 57 :% 103. len1 l = if (l == [℄) then 0 else 1 + len1 (tail l)len1 :: (Eq a, Num b) => [a℄ -> bThe translation of len1 is:len1 dEqa dNumb l = if (== (di
tEqList dEqa) l [℄)then fromInteger dNumb 0else (+ dNumb) 1 (len1 dEqa dNumb (tail l))Now 
onsider the appli
ation of len1 [1,2,3℄. [1,2,3℄ has the type (Num 
) => [
℄ andrewrites to:\dNum
 [fromInteger dNum
 1, fromInteger dNum
 2, fromInteger dNum
 3℄Igonring the 
ontext:[1,2,3℄ :: [
℄, andlen1 :: (Eq a, Num b) => [a℄ -> buni�
ation would give 
 / a. Therefore the type of len1 [1,2,3℄ is (Eq a, Num a, Numb) => b, and the translation is:\dEqa \dNuma \dNumb -> (len1 dEqa dNumb) [fromInteger dNuma 1, fromInteger dNuma2, fromInteger dNuma 3℄But we 
an derive a Eq di
tionary from a Num di
tionary. Therefore,len1 [1,2,3℄ :: (Num a, Num b) => b, and its translation is:\dNuma \dNumb -> (len1 (getEqfromNum dNuma) dNumb) [fromInteger dNuma 1,fromInteger dNuma 2, fromInteger dNuma 3℄The default de
laration gives a and b as Integer. Therefore, we have:len1 di
tEqInteger di
tNumInteger [ 1Integer, 2Integer, 3Integer,℄What happens in the 
ase of len1 [℄? Sin
e [℄ :: [
℄,len1 [℄ :: (Eq a, Num b) => b, and translates to\dEqa \dNumb (len1 dEqa dNumb) [℄default de
laration gives\dEqa (len1 dEqa di
tNumInteger) [℄ :: (Eq a) => IntegerTop level unresolved overloading. 9



4. len2 [℄ = 0len2 (x:xs) = 1 + len1 xslen2 :: Num b => [a℄ -> blen2 [℄ :: Num b => bbe
ause of default de
larations, this resolves tolen2 [℄ :: Integer5. funny l = if (l == [1℄) then head l else 1 + funny (tail l)funny :: (Num a) => [a℄ -> a6. funnier l = if (l == [1℄) then 1 else 1 + funnier (tail l)funnier :: (Num a, Num b) => [a℄ -> b7. funniest x = 1 + funny [℄funniest :: Num b => 
 -> b8. read :: (Read a) => String -> aread "2.0" :: (Read a) => a -- top level unresolved overloadingread "2.0" + 3.0 :: (Fra
tional a, Read a) => adefault rewrites to Double9. show :: (Show a) => a -> Stringshow (2+2) :: (Show a, Num a) => Stringdefault rewrites to String10. show ( read "123") :: (Show a, Read a) => Stringtop level unresolved overloading
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