Monads and IO in Haskell

Amitabha Sanyal
April 25, 2005

Abstract

In certain situations a program has to handle more than normal values.
Examples are computations that can produce errors and computations that
have to handle state change. A monad provides a mechanism of handling such
situations without cluttering the program.

Haskell models IO as compuations which change the state of the external
world.

In certain situations we have to handle more than normal values. Examples are
computations that can produce errors and computations that have to handle state
change. A monad provides a mechanism of handling such situations without cluttering
the program.

1 A first example - The Error monad
Consider writing an evaluator for the following langugage:

data Exp = Con Int | Add Exp Exp | Div Exp Exp

The evaluator is defined in Haskell as the function eval:

eval :: Exp -> Int

eval (Con i) = 1i

eval (Add el e2)
eval (Div el e2)

Eval el + Eval e2
Eval el / Eval e2

Now suppose we wanted eval itself to handle the error situation produced by a
division by 0. Then the modified definition of eval will be:

data Value = N Int | Error -— N for normal values.

eval :: Exp -> Value
eval (Con i) = N i
eval (Add el e2) = case eval el of
Error -> Error
N il -> case eval e2 of
Error -> Error
N i2 -> N (i1 + i2)

case eval el of
Error -> Error
N i1l -> case eval e2 of
Error -> Error
N O -> Error
N i2 -> N (i1 / i2)

eval (Div el e2)

The code which has become messy can be cleaned by factoring out frequently occur-
ring patterns by the use of a monad.

data ErrorMonad a = N a | Error

A monad is a datatype which extends normal value along two functions unit and
then, which have the following types.

unit :: a —> ErrorMonad a
then :: ErrorMonad a -> (a -> ErrorMonad b) -> ErrorMonad b

In the case of of the ErrorMonad, the functions unit and then are:

unit i = N i

then m k = case m of
Error -> Error
Ni >k i

So that the monadic definition of the evaluator becomes

eval :: Exp -> ErrorMonad
eval (Con i) = unit i
eval (Add el e2) = eval el ’then’
\il -> eval e2 ’then’
\i2 -> unit (il + i2)
eval (Div el e2) = eval el ’then’
\il -> eval e2 ’then’
\i2 —> if (i2 == 0) then Error
else unit (i1 / i2)

2 A second example - state monad

Now consider the language which has variables and a x++ like construct to change
the state:

V Var | PP Var | Add Exp Exp | Div Exp Exp
AlBI|C

data Exp
data Var

To interpret this language we have to introduce states.
type State = Var -> Int

Now, apart from producing a value, eval also changes the state. Ignoring the pro-
duction of error values, eval can be written as

eval :: State -> (Int, State)
eval (Vv) s = (s v, 8)
eval (PP v) s = let i =8 v

in (i, \v’. if v == v’ then i+1 else s Vv’)
eval (Add el e2) s = let (i1, sl1) = eval el s
(12, s2) = eval e2 si

in (i1+i2, s2)

eval (Div el e2) s = let (i1, s1)
(12, s2)
in (i1/i2, s2)

eval el s
eval e2 si

Once again, using monads we can factor out common patterns of code.

type State = Ide -> Int
type StateMonad a = State -> (a, State)

unit :: a -> StateMonad a
then :: StateMonad a -> (a -> StateMonad b) -> StateMonad b

Notice that the types of unit and then remain unchanged except that ErrorMonad
has been replaced by StateMonad.

unit i s = (i, s8)
then m k = \s -> let (i1, s1) =m s
in k i1 si

The action of then can be explained by the following diagram:

The monadic form of the evaluator is:

eval :: Exp -> StateMonad a

eval (Vv) =\s > (s v, 8)
eval (PP v) = \s > let i =8 v

in (i, \v’. if v == v’ then i+1 else s v’)
eval el ’then’

\il eval e2 ’then

\i2 unit (i1 + i2)
eval el ’then’

\il eval e2 ’then

\i2 unit (i1 / i2)

eval (Add el e2)

eval (Div el e2)

As an exercise, find the value of

eval (Add (Var B) (PP B)) s
where s v | v ==A=3

| v==B=686

| v==C=5

3 Haskell support for monads
In Haskell, there is a predefined class called Monad

class Monad m where

(>>=) ::ma->(a->mb) >mb -— then
>> ::ma->mb->mb —-— another form of then
return :: a -> m a -— unit

The second form of then is useful in situations when the value produced by the first
argument of then is not required by the second. (>>) can be defined as

> mk= m>>=_ >k

We shall see examples of use of (;;) in defining IO functions.
We can now define ErrorMonad and StateMonad to be instances of Monad

instance Monad ErrorMonad where

(>>=) mk = case m of
Error -> Error
Ni ->k i

return i = N i
Now the monadic evaluator for eval can be written as:

eval (Con i) = return i
eval (Add el e2) = eval el >>=
\il -> eval e2 >>=
\i2 -> return (i1l + i2)
eval (Div el e2) = eval el >>=
\il -> eval e2 >>=
\i2 —> if (i2 == 0) then Error
else return (i1l / i2)

In fact, Haskell provides a notation called do to express the above very conveniently.

eval (Con i) = return i
eval (Add el e2) = do
il <- eval el
i2 <- eval e2
return (il + i2)
eval (Div el e2) = do
il <- eval el
i2 <- eval e2
if (i2 == 0) then Error else return (il / i2)

In summary.

do
il <- ml
i2 <- m2
m3

is a shorthand for

mli (>>=) \il -> m2 (>>=) \i2 -> m3

whereas

do
mil
m2
m3

is a shorthand for

ml (>>) m2 (>>) m3

4 A third example - IO monad

We now add features to perform IO in our example language.
data Exp = (Con i) | Read | Print Exp | Add Exp Exp

IO is modeled as a changes in state, where the state consists of a pair of lists repre-
senting input and an output streams.

type I0State = ([Int], [Int])
type IOMonad a = IOState -> (a, IOState)

Now we make I0Monad as an instance of Monad.

instance Monad IOMonad where
return = (i, s)
(>>=) mk = \s > let (i1, s1) = m s
in k i1 si1

The details of the state has not afftected the unit and the then definition.
The evaluator for this language is

eval :: Exp -> IOMonad
eval (Con i) = return i
eval Read = \(i:is, os) -> (i, (is,o0s))
eval (Print e) = do
o <- eval e
\(is,os) -> (0O, (is, o0:08))

eval (Add el e2) = do

il <- eval el

i2 <- eval e2

return (i1 + i2)

To enable a program in the example language to perform 10, we have to call the
evaluator with the program and supply it with an initial state. As an exercise, find
the value of the program below.

eval (Print (Add Read Read)) ([4,6,3,3]1, [1)

5 The Haskell 10 model
We just modeled a small IO-capable language on top of Haskell.
type IOMonad a = IOState -> (a, IOState)

To evaluate a program in this language, we create an initial state at the Haskell level,
and pass it to the program.

eval exp initialState

This can be summarized by the diagram shown below.

Haskell

Example Language
IOState I0State

value

The IO model of Haskell can be understood in terms of a similar diagram:

Runtime system

.| Haskell .
World World
—

value

World is a datatype modeling the state of the Haskell runtime system.
type I0 a = World -> (a, World)

The runtime system passes an initial World to Haskell. This happens when we call
the function main.

(eval) main initialWorld

Regard I0 a as an “action” (script) that, when performed, may do some input/output,
before delivering a value of type a. Here “performed” means supplied with a World,
and “do some input output” means change the World.

World is an abstract data type. It cannot be defined in or created inside Haskell. It
can only be modified through a set of given 10 functions.

Here are some functions defined in Haskell.

getChar :: IO Char
putChar :: Char -> I0 ()

getChar takes a World and reads a character from the keyboard, thereby changing
it. In terms of a diagram:

w :World w’ ::World

getChar ¢ :: Char

putChar on the otherhand, takes a character and a World and changes the World by
writing the character on the console. It returns the void value.

w :World w’ ::World
¢ :: Char putChar 0::(

Using these, we can write a program to echo a character from the keyboard.

echo :: I0 () echo = do
¢ <- getChar
putChar c

And another to echo the character twice

echoDup :: I0 O
echoDup = do
¢ <- getChar
putChar c
putChar c

getTwoChars gets two characters.

getTwoChars :: IO (Char, Char)
getTwoChars = do
cl <- getChar
c2 <- getChar
return (cl, c2)

and getLine reads an entire line.

getLine :: IO [Char]
getlLine = do
¢ <- getChar
if ¢ == ’\n’ then return []
else do
cs <- getline
return(c:cs)

forever performs an IO action for ever.

forever :: I0 () -> I0 O
forever a = do

a

forever a

sequence :: [I0 al -> I0 [al
sequence :: Monad m => [m al] -> m [a]

sequence = foldr mcons (return [])
where mcons p q = do
X <-p
y<-q
return (x:y)
sequence_ = foldr (>>) (return [1)

getContents operation returns all user input as a single string, which is read lazily
as it is needed.
getContents :: 10 [Char]

interact :: (String -> String) -> I0 (O

interact f = do
s <- getContents
putStr(f s)

Here is an example of interact

main = interact(unlines . map f . takewhile (\= ‘‘quit’’) . lines)
where f = map toUpper

Here are some reading functions:

readlLn :: Read a => I0 a
readIO :: Read a => String -> I0 a
readI0 s = case [x | (x,t) <- reads s, ("","") <= lex t] of

[x] -> return x
[-> ioError (userError "Prelude.readIO: no parse")
-> ioError (userError "Prelude.readIO: ambiguous parse")

readlLn :: Read a => 10 a

readln = do 1 <- getLine
r <- readIO 1
return r

print :: Show a => a -> I0 ()

6 Single-threaded-ness and implementation

Consider the program
getChar >>= \c -> (putChar ¢ >> putChar c)
This rewrites to:

\world -> let (c, world’) = getChar world
in let (_, world’’) = putChar c world’
in let (v, world’’’) = putChar c world’’
in (v, world’’’)

This is single threaded. The same copy of the world passes through the program
getting modified in the process. This admits a feasible and efficient impementation
in which every copy of getChar and putChar is replaced with a corresponding C
function.

Suppose the compiler rewrites this to:

\world -> let (c, world’) = getChar world
in let (_, world’’) = putChar c¢ world’
in let (v, world’’’) = putChar (fst (getChar world))
world’’
in (v, world’’’)

Since the world is duplicated, the efficient implementation through C is not possible.

10

6.1 IO specific to a given type

readIO :: Read a => String -> I0 a
readl0 s =
case [x | (x,t) <~ reads s, ("","") <- lex t] of
[x] -> return
[-> ioError (userError "Prelude.readIO: no parse")
-> ioError (userError "Prelude.readIO: ambiguous parse')

From a string s reads a value of a type a. After reading the character there should not
be any Haskell lexeme left in the string. And the value should not have an ambiguous
parse.

A user defined type, such as a binary tree could have an ambiguous parse

readlLn :: Read a => 10 a
readlLn :: Read a => I0 a
readln = do 1 <- getLine
r <- readIO 1
return r
print :: Show a => a -> I0 ()
6.2 File IO

type FilePath = String

writeFile :: FilePath -> String -> I0 ()
appendFile :: FilePath -> String -> I0 ()
readFile :: FilePath -> IO String

main = do

putStr "Input file: "

ifile <- getLine

putStr "Output file: "

ofile <- getLine

s <- readFile ifile

writeFile ofile (filter isAscii s)
putStr "Filtering successful\n"

11

