
Notes on �-calculusAuthor: Amitabha SanyalLast updated: 24th August 2001AbstractIn the attempt to formalise the intuitive notion of computability, Turing came up withthe Turing machine. Later developments of computer hardware was closely based on thismodel. In particular, von Neumann's idea of a stored program computer came from theUniversal Turing machine.Though convenient to realise in hardware, this model is too operational in nature. Whatis required is a model that captures computations instead of computers. Church's model,the lambda-calculus, does this by providing two essential things: a way of constructingfunctions and a way of applying them. The terms in lambda-calculus allow us to createfunctions and the �-reduction rule models application.Our interest in lambda calculus stems from the fact that functional programming closelyfollows this model. In fact functional programs are sugared lambda terms and interpretationof a functional program on actual hardware is an implementation of sequences of betareductions.1 SyntaxA term in lambda-calculus is de�ned by the following abstract syntax :e ::x j �x:e j e1e2 j (e)Each e generated by the above rule is called a lambda term and is either a variable, anabstraction (�x:e) or an application (e1e2). An abstraction is a term that stands for afunction that takes an argument, binds it to the variable x, evaluates the expression e withthe above binding for x and returns the value. To avoid ambiguities we parenthesize theexpression. However too many brackets hinder readability and so we introduce the followingscope rules :� �x:e1 e2 e3 is an abbreviation for �x:(e1 e2 e3), i.e. the scope of �x is as far to theright as possible until it is terminated (i) by a `)' whose matching `(' occurs to theleft of the �, or (ii) by the end of the term.� Application associates to the left, i.e. e1 e2 e3 is to be read as (e1 e2) e3, and note1 (e2 e3).� �xyz:e is an abbreviation for �x�y�z:e, which in turn is actually �x:(�y:(�z:e))1



Though the language looks very small, we shall see later that most Haskell expressions canbe translated into such a language.2 �-reductionThe basic reduction rule in �-calculus is the rule that tells us how to compute applications.The rule is quite intuitive: it says that if an abstraction �x:e1 is applied to a term e2, thenthe result of the application is the body of the abstraction e1 with all free occurrences ofthe formal parameter x replaced with e2.(�x:e1)e2 ��! e1[e2=x]Read ��! above as �-reduces to. An expression like (�x:e1)e2, which is a possiblecandidate for �-reduction, is called a �-redex(redex in short). We shall extend �-reductionto arbitrary lambda-terms by saying that e1 ��! e2 if some redex in e1 is reduced to e2.Here is an example of a series of ��reductions. The redex which is reduced at eachstep is boxed.(�x�y�z:xz(yz))(�x�y:x) (�y:y)��! (�y�z: (�x�y:x)z (yz))(�y:y)��! (�y�z: (�y:z)(yz)) )(�y:y)��! (�y�z:z)(�y:y)��! �z:zThere is a caution which should be exercised while applying the �-reduction rule. Anoccurrence of a variable is said to be bound in an lambda term, if it is in the scope of anabstraction of a variable with the same name. Otherwise it is free. Thus in the lambdaterm �x�y:xz, the underlined x is bound and the overlined z is free. De�ne A = �x�y:x.Now reduce the term A(�x:y) and observe that the y that was initially free in this term isnow bound in the reduced term. This is the problem of variable-capture and to see thatallowing this is wrong de�ne B = �x�u:x. This is the same function as A except forrenaming of the variable y. However observe that the reductions A(�x:y) and B(�x:y)give rise to di�erent results.To avoid the variable-capture problem, we de�ne the the notion of �-renaming(denoted as��! as follows :�x:t ��! �y:t[y=x]Variable capture in the example above can now be avoided by using �-renaming A to B.Exercise: Parenthesize the following expressions correctly and reduce them as far aspossible. 2



1. (�f�x:f(f(x)))(�y:xy)(�y:xy)2. (�f�g�x:f(g(x)))(�f�g�x:g(f(x)))(�x�y:x)� and � conversion rules represent di�erent ways in which two lambda-terms can be consid-ered equivalent. There is a third conversion rule called ��reduction (denoted ��!) whichcaptures the idea that two functions are equal if they give the same result on applicationto any argument. Thus �x:fx and f , can be seen to be equivalent by applying both ofthem to a third term e. Formally,�x:fx ��! f .As in �-reduction, we can generalize �-renaming and �-reduction to arbitray terms. Weshall use �! to mean ��!, ��! or ��!. Unless otherwise stated, from now on by `reduction'we shall mean �!. Finally, a sequence of zero or more reductions will be represented as!!.2.1 Orders of ReductionWe say that a term is in normal form if it cannot be reduced any further, i.e. it doesnot contain any redexes. A reduction sequence terminates when it produces a term innormal form. If we consider a lambda term to be a program and �-reduction as execution,then the normal form of the term can be considered as the `answer' of the program. Wehave seen that some reduction sequences, like the one shown above, terminate. Howeversome of them may not. Show that the reduction sequence of the lambda term below neverterminates.(�x:xx)(�x:xx)In fact, the size of the term may keep on growing with every �-reduction. Verify that thisis the case for�f(�x:f(xx))(�x:f(xx)):In general, a given term may have more than one �-redexes. Whether a particular reductionsequence terminates or not may depend on the order in which we choose these redexes forreduction. For the term given below, enumerate at least two reduction sequences, one ofwhich terminates and one does not.(�x�y�z:xz(yz))(�x�y:x)((�x:xx)(�x:xx))2.2 Church-Rosser TheoremHowever, if two di�erent reduction sequences terminate then they always terminate in thesame term. The general statement of which the above is a corollary is called the Church-3



Rosser Theorem. Formally,Church Rosser Theorem: If e !! e1 and e !! e2, then there is a lambda term e0such that e1 !! e0 and e2 !! e0.In terms of a diagram, we have:
e2e1

e’

e

Exercise: Show that if two di�erent reduction sequences terminate, then they alwaysterminate in the same term.Verify this result for the following terms.1. (�x�y:xy)((�x�y:x(xy))f)2. (�x�yz:xy(yz))(�x�y:z)(�y:y)A reduction sequence that always reduces the leftmost outermost redex is called a normalorder reduction sequence.A theorem called the normalisation theorem asserts that if a normal form exists at all,thenormal order reduction sequence will �nd it.Exercise: Verify this theorem for the examples given above.3 Representation of `data'We now show how some commonly used data structures and operations can be de�nedusing �-calculus.3.1 NumbersOne way of representing numbers is through Church numerals, in which the representationof a number n, denoted as n, is �x�y:x(x(: : : n times : : : x(y) : : : )). Thus 0 = �x�y:yand 2 = �x�y:x(xy).Why does this representation make sense? It is because, based on this representation, wecan now de�ne most of the arithmetic functions on numbers. For instance:4



1. We can de�ne the successor function as. succ = �x�y�z:y(xyz). Verify thatsucc n = n+ 12. Similarly de�ne add as �x�y�z�w:x z (y z w) and verify once again that add n m =n+m3. Finally de�ne mult as mult = �x�y�z:x(yz) and show that mult n m = n �m3.2 BooleansDe�ne true = �x�y:x and false = �x�y:y. With these representations it is possible towrite the conditional function if such that if c e1 e2 reduces to e1 if c reduces to true,and e2 if c reduces to false.Exercise:1. Write a �-term for if .2. Write a function iszero which yields true when applied to 0 and false when appliedto any other numeral.3. What simple arithmetic function does the following lambda term represent?�n:n(�p�z:z(succ(p true))(p true)) (�z:z 0 0) false3.3 ListsDe�ne Nil = �x:�y:y, and Cons = �x�y�z:zxy. Based on this, write the representationof the list [a; b; c], which is actually (Cons a (Cons b (Cons c Nil))).Now we can write the functions isNil = �a:a(�zpw:false)true. Show that isNil Nil =true and isNil(Cons a (Cons b (Cons c Nil))) = falseDe�ne head = �x:(x (�x�y:x)). Show that head (Cons a (Cons b Nil))) = a. Similarlyde�ne tail and show that tail(Cons a (Cons b Nil))) = (Cons b Nil))Exercise: We want to de�ne trees of the form:data Tree = Node Int Tree Tree | Niltreein lambda calculus, given the lambda representation for integers. To do this, give lambdaterms for constructors node and niltree and the destructors getvalue, getltree and getrtree.Additionally, de�ne a function isniltree which will return true if its argument is niltree,and false otherwise.4 RecursionThe machinery seen so far does not allow us to de�ne a value recursively, i.e. through anequation like p = f p. In this equation, it is p which is being de�ned. Any value whichsatis�es the equation when plugged in place of p, is called a fixpoint of f . Thus any�xpoint of f is a solution of the equation p = f p.5



Assume for the moment that there exists a function, historically called Y , which whenapplied to f , gives the �xpoint of f . Then clearly Y f is a solution of p = f p, i.e.(Y f) = f (Y f). This gives us a method to convert a recursively de�ned value into anon-recursive one. The recursive equation p = f p de�nes the same value as the non-recursive lambda term Y f . But all this is true provided there exists a Y satisfying thecrucial property (Y f) = f (Y f).We show �rst that there is such a Y . Actually there are many such Y s of which the mostwell-known is:Y = �f(�x:f(xx))(�x:f(xx))Now,Y f = (�f(�x:f(xx))(�x:f(xx)))f= (�x:f(xx))(�x:f(xx))= f((�x:f(xx))(�x:f(xx)))= f(Y f)Exercise: This is a great one. De�ne:T = �abcdefghijklmnopqstuvwxyzr:r(thisisafixedpointcombinator)Yfunny = TTTTTTTTTTTTTTTTTTTTTTTTTTNow show that Yfunny is a �xed point function, i.e. (Yfunny f) = f (Yfunny f).To see this theory at work, consider the recursively de�ned functionfact n = if(iszero n) 1 (mult n (fact(pred n)))where if and mult are as de�ned before, and pred satis�es the equation pred n = n� 1.One should look upon this equation as one de�ning the value fact.Now let us �rst write this equation in the form fact = g fact for some g. First bring n tothe rhs.fact = �n:if(iszero n) 1 (mult n (fact(pred n)))fact = (�f�n:if(iszero n) 1 (mult n (f (pred n))) fact)fact = g fact, whereg = �f�n:if(iszero n) 1 (mult n (f(pred n)))Now according to the preceding discussion, the non-recursive lambda term Y g shouldexpress the same factorial function which was being speci�ed by the recursive equationabove. Let us verify this by showing that (Y g) 2 = 2.(Y (�f�n:if (iszero 2) 1 (mult 2 (f(pred n))))) 2= ((�f�n:if (iszero 2) 1 (mult 2 (f (pred n))))(Y f)) 2= (�n:if (iszero n) 1 (mult 2 ((Y f) f (pred n)))) 2= (if (iszero 2) 1 (mult 2 ((Y f) (pred 2)))) 2= (mult 2 ((Y f) (pred 2)))= (mult 2 ((Y f) 1))...= mult 2 (if(iszero 1) 1 (mult 1((Y f)(pred 1))))6



...= mult 2 (mult 1 (if(iszero 0) 1 (mult 1 ((Y f)(pred 0)))))= mult 2 (mult 1 1)= 2Exercise1. Fill in the missing steps in the reduction given above. Using the non-recursive speci-�cation of fact in a similar way, reduce fact 4 to 24.2. Using iszero, pred, mult and Y , de�ne exp satisfying exp m n = mn.

7


