
Program Analysis
https://www.cse.iitb.ac.in/~karkare/cs618/

Amey Karkare
Dept of Computer Science and Engg

 IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Welcome & Introduction

Program Analysis: About the course

2

Program Analysis: About the course
• Analysis of a Program, by a Program, for a

Program

2

"Democracy is the government of the people, by the people, for the people" - Abraham Lincoln

Program Analysis: About the course
• Analysis of a Program, by a Program, for a

Program
• of a Program - User Program

2

"Democracy is the government of the people, by the people, for the people" - Abraham Lincoln

Program Analysis: About the course
• Analysis of a Program, by a Program, for a

Program
• of a Program - User Program
• by a Program - Analyzer (Compiler, Runtime)

2

"Democracy is the government of the people, by the people, for the people" - Abraham Lincoln

Program Analysis: About the course
• Analysis of a Program, by a Program, for a

Program
• of a Program - User Program
• by a Program - Analyzer (Compiler, Runtime)
• for a Program - Optimizer, Verifier, ...

2

"Democracy is the government of the people, by the people, for the people" - Abraham Lincoln

Expectations from You

3

Expectations from You
• Basic Compilers Knowledge

3

Expectations from You
• Basic Compilers Knowledge
• Write code

– C/C++ for Assignments

–C/C++/Java/Python for Project (Tentative)

3

Expectations from You
• Basic Compilers Knowledge
• Write code

– C/C++ for Assignments

–C/C++/Java/Python for Project (Tentative)

• Understand and modify large code base
–GCC, LLVM, SOOT

3

Expectations from You
• Basic Compilers Knowledge
• Write code

– C/C++ for Assignments

–C/C++/Java/Python for Project (Tentative)

• Understand and modify large code base
–GCC, LLVM, SOOT

• Read state of the art research papers
–Discussions in class

3

Your Expectations

4

Your Expectations

• ?

4

Quick Quizzes (QQs)

5

Quick Quizzes (QQs)

• There will be small quizzes (10-15
min duration) during the class.

5

Quick Quizzes (QQs)

• There will be small quizzes (10-15
min duration) during the class.

• These can be announced or un-
announced (surprize quizzes).

5

Quick Quizzes (QQs)

• There will be small quizzes (10-15
min duration) during the class.

• These can be announced or un-
announced (surprize quizzes).

• Always bring a pen and some
loose papers to the class

5

QQ #1 (Ungraded)

• What are the various phases of compilers that
you know? (5 minutes)

6

….
File.c File.asm

Assignments / Exercises

7

Assignments / Exercises

• Short assignments to apply the
lecture material.

7

Assignments / Exercises

• Short assignments to apply the
lecture material.

• Assignments will have some
written and some programming
tasks.

7

Assignments / Exercises

• Short assignments to apply the
lecture material.

• Assignments will have some
written and some programming
tasks.

• 4-5 Assignments for the semester
7

Using Program Analysis

8

Using Program Analysis

• Compiler Code Optimizations

8

Using Program Analysis

• Compiler Code Optimizations
• Why are optimizations important?

8

Using Program Analysis

• Compiler Code Optimizations
• Why are optimizations important?
• Why not write optimized code to

begin with?

8

Using Program Analysis

• Compiler Code Optimizations
• Why are optimizations important?
• Why not write optimized code to

begin with?
• Where do optimizations fit in the

compiler flow?

8

Code Optimization

9

Code Optimization
• Machine Independent

– Remove redundancy introduced by the
Programmer

– Remove redundancy not required by later phases
of compiler

– Take advantage of algebraic properties of
operators

9

Code Optimization
• Machine Independent

– Remove redundancy introduced by the
Programmer

– Remove redundancy not required by later phases
of compiler

– Take advantage of algebraic properties of
operators

• Machine dependent
– Take advantage of the properties of target machine

9

Code Optimization
• Machine Independent

– Remove redundancy introduced by the
Programmer

– Remove redundancy not required by later phases
of compiler

– Take advantage of algebraic properties of
operators

• Machine dependent
– Take advantage of the properties of target machine

Optimization must preserve the semantics of the
original program!

9

Machine Independent
Optimizations

Motivational Example
void quicksort(int m, int n)
/* recursively sort a[m] through a[n] */
{
 int i, j;
 int v, x;
 if(n <= m) return;
 i = m – 1; j = n; v = a[n];
 while (1) {
 do i = i+1; while (a[i] < v);
 do j = j-1; while (a[j] > v);
 if (i > j) break;
 x = a[i]; a[i] = a[j]; a[j] = x;
 }
 x = a[i]; a[i] = a[n]; a[n] = x;
 quicksort(m,j); quicksort(i+1,n);
}

11

Motivational Example
void quicksort(int m, int n)
/* recursively sort a[m] through a[n] */
{
 int i, j;
 int v, x;
 if(n <= m) return;
 i = m – 1; j = n; v = a[n];
 while (1) {
 do i = i+1; while (a[i] < v);
 do j = j-1; while (a[j] > v);
 if (i > j) break;
 x = a[i]; a[i] = a[j]; a[j] = x;
 }
 x = a[i]; a[i] = a[n]; a[n] = x;
 quicksort(m,j); quicksort(i+1,n);
}

11

 i = m – 1; j = n; v = a[n];
 while (1) {
 do i = i+1; while (a[i] < v);
 do j = j-1; while (a[j] > v);
 if (i > j) break;
 x = a[i]; a[i] = a[j]; a[j] = x;
 }
 x = a[i]; a[i] = a[n]; a[n] = x;

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

(1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]
(5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)
(9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)
(13) if i>=j goto(23)

(14) t6 = 4*i
(15) x = a[t6]
(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)
(23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

t6 = 4*i
x = a[t6]
t7 = 4*i
t8 = 4*j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
goto B2

t11 = 4*i
x = a[t11]
t12 = 4*i
t13 = 4*n
t14 = a[t13]
a[t12] = t14
t15 = 4*n
a[t15] = x

B1 B2

B5

B4

B6

B3

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

t6 = 4*i
x = a[t6]
t7 = 4*i
t8 = 4*j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
goto B2

t11 = 4*i
x = a[t11]
t12 = 4*i
t13 = 4*n
t14 = a[t13]
a[t12] = t14
t15 = 4*n
a[t15] = x

B1 B2

B5

B4

B6

B3

Common Subexpression Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = a[t2]

t8 = 4*j
t9 = a[t8]
a[t2] = t9
t10 = 4*j
a[t10] = x
goto B2

x = a[t2]

t13 = 4*n
t14 = a[t13]
a[t2] = t14
t15 = 4*n
a[t15] = x

B1 B2

B5

B4

B6

B3

Common Subexpression Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = a[t2]

t9 = a[t4]
a[t2] = t9

a[t4] = x
goto B2

x = a[t2]

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Common Subexpression Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = a[t2]

t9 = a[t4]
a[t2] = t9

a[t4] = x
goto B2

x = a[t2]

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Common Subexpression Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = t3

a[t2] = t5

a[t4] = x
goto B2

x = t3

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Common Subexpression Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = t3

a[t2] = t5

a[t4] = x
goto B2

x = t3

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Did I miss one common subexpression?

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = t3

a[t2] = t5

a[t4] = x
goto B2

x = t3

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Did I miss one common subexpression? Elimination not safe as a[] is
modified on path

B1->B2->B3->B4->B5->B2->B3->B4->B6

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = t3

a[t2] = t5

a[t4] = x
goto B2

x = t3

t14 = a[t1]
a[t2] = t14

a[t1] = x

B1 B2

B5

B4

B6

B3

Copy Propagation

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

x = t3

a[t2] = t5

a[t4] = t3
goto B2

x = t3

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1 B2

B5

B4

B6

B3

Copy Propagation

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1 B2

B5

B4

B6

B3

Dead Code Elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1 B2

B5

B4

B6

B3

Strength Reduction

i = m-1
j = n
t1 = 4*n
v = a[t1]
t2 = 4*i
t4 = 4*j

i = i+1
t2 = t2+4
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = t4-4
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1
B2

B5

B4

B6

B3

Strength Reduction

i = m-1
j = n
t1 = 4*n
v = a[t1]
t2 = 4*i
t4 = 4*j

i = i+1
t2 = t2+4
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = t4-4
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1
B2

B5

B4

B6

B3

Induction Variable elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]
t2 = 4*i
t4 = 4*j

i = i+1
t2 = t2+4
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = t4-4
t5 = a[t4]
if t5>v goto B3

if t2>=t4 goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1
B2

B5

B4

B6

B3

Induction Variable elimination

i = m-1
j = n
t1 = 4*n
v = a[t1]
t2 = 4*i
t4 = 4*j

t2 = t2+4
t3 = a[t2]
if t3<v goto B2

t4 = t4-4
t5 = a[t4]
if t5>v goto B3

if t2>=t4 goto B6

a[t2] = t5

a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14

a[t1] = t3

B1
B2

B5

B4

B6

B3

Dead Code elimination (again!)

Benefits
Block # Stmt before

Optimizations
Stmt after
Optimizations

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

28

Benefits
Block # Stmt before

Optimizations
Stmt after
Optimizations

B1 4 6

B2 4 3

B3 4 3

B4 1 1

B5 9 3

B6 8 3

28

Assume: Unit cost for statements, 10 iterations of outer
loop, 100 iterations of each inner loop
Cost of execution:
ORIGINAL: 1*4 + 100*4 + 100*4 + 10*1 + 10*9 + 1*8 = 912
OPTIMIZED: 1*6 + 100*3 + 100*3 + 10*1 + 10*3 + 1*3 = 649

Machine Dependent
Optimizations

Peephole Optimization

30

Peephole Optimization
• target code often contains redundant

instructions and suboptimal constructs

30

Peephole Optimization
• target code often contains redundant

instructions and suboptimal constructs

• examine a short sequence of target
instruction (peephole) and replace by a
shorter or faster sequence

30

Peephole Optimization
• target code often contains redundant

instructions and suboptimal constructs

• examine a short sequence of target
instruction (peephole) and replace by a
shorter or faster sequence

• peephole is a small moving window on the

target systems

30

Peephole optimization examples…

 Redundant loads and stores

• Consider the code sequence

 Move R0, a
 Move a, R0

31

Peephole optimization examples…

 Redundant loads and stores

• Consider the code sequence

 Move R0, a
 Move a, R0

• Instruction 2 can always be removed if it

does not have a label.

31

Peephole optimization examples…

Unreachable code
• Consider following code sequence
 #define debug 0
 if (debug) {
 print debugging info
 }

 32

Peephole optimization examples…

Unreachable code
• Consider following code sequence
 #define debug 0
 if (debug) {
 print debugging info
 }

 this may be translated as
 if debug == 1 goto L1
 goto L2
 L1: print debugging info
 L2:

 32

Peephole optimization examples…

Unreachable code
• Consider following code sequence
 #define debug 0
 if (debug) {
 print debugging info
 }

 this may be translated as
 if debug == 1 goto L1
 goto L2
 L1: print debugging info
 L2:

 Eliminate jumps
 if debug != 1 goto L2
 print debugging information
 L2: 32

Unreachable code example …

33

Unreachable code example …
 constant propagation
 if 0 <> 1 goto L2
 print debugging information
 L2:

33

Unreachable code example …
 constant propagation
 if 0 <> 1 goto L2
 print debugging information
 L2:

 Evaluate boolean expression. Since if condition is always true the

code becomes
 goto L2
 print debugging information
 L2:

33

Unreachable code example …
 constant propagation
 if 0 <> 1 goto L2
 print debugging information
 L2:

 Evaluate boolean expression. Since if condition is always true the

code becomes
 goto L2
 print debugging information
 L2:

 The print statement is now unreachable. Therefore, the code

becomes

 L2:

33

Peephole optimization examples…

• flow of control: replace jump over jumps

 goto L1
 …
 …
 L1 : goto L2

34

 goto L2
 …
 …
 L1: goto L2

by

Peephole optimization examples…

• flow of control: replace jump over jumps

 goto L1
 …
 …
 L1 : goto L2

• Simplify algebraic expressions
 remove x := x+0 or x:=x*1

34

 goto L2
 …
 …
 L1: goto L2

by

Peephole optimization examples…

35

Peephole optimization examples…

• Strength reduction
– Replace X^2 by X*X
– Replace multiplication by left shift
– Replace division by right shift

35

Peephole optimization examples…

• Strength reduction
– Replace X^2 by X*X
– Replace multiplication by left shift
– Replace division by right shift

• Use faster machine instructions
 replace Add #1,R
 by Inc R

35

Course Logistics

36

Proposed Evaluation
Assignments 5%-10%
Course Project 30%-40%

(Proposal 5%)
(Report 15%)

(Presentation 15%)
Mid semester exam 10%-20%
End semester exam 25%-35%
Quizzes/Class Participation 5%

37

Project

38

Project
• Major part of the course

38

Project
• Major part of the course
• You need to implement some non-trivial

analysis/optimization using one of the open
source infrastructure
– For e.g., some paper published in last 10 years

38

Project
• Major part of the course
• You need to implement some non-trivial

analysis/optimization using one of the open
source infrastructure
– For e.g., some paper published in last 10 years

• You are encouraged to suggest your own
projects

38

Project
• Major part of the course
• You need to implement some non-trivial

analysis/optimization using one of the open
source infrastructure
– For e.g., some paper published in last 10 years

• You are encouraged to suggest your own
projects

• Bonus marks for publishable results

38

Project
• Major part of the course
• You need to implement some non-trivial

analysis/optimization using one of the open
source infrastructure
– For e.g., some paper published in last 10 years

• You are encouraged to suggest your own
projects

• Bonus marks for publishable results

• Individual OR Group of 2
38

Assignment #1

39

Assignment #1
• Select one of the compiler

infrastructure mentioned on the
course webpage and
a) Download it
b) Build it
c) Submit a report
d) one page about the infrastructure, and

the optimizations present in it.
e) one page about the most interesting

optimization found, with example
39

Assignment #1
• You can try more than one tool, even

something not mentioned on the webpage.
• But submit report for only one.

– Preferably the one you plan to use for your
project.

40

Assignment #1
• You can try more than one tool, even

something not mentioned on the webpage.
• But submit report for only one.

– Preferably the one you plan to use for your
project.

• DEADLINE: July 30th, End of Day (before Midnight)
• See course website for submission details (TBD)

https://www.cse.iitb.ac.in/~karkare/cs618/

40

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	Program Analysis: About the course
	Program Analysis: About the course
	Program Analysis: About the course
	Program Analysis: About the course
	Program Analysis: About the course
	Expectations from You
	Expectations from You
	Expectations from You
	Expectations from You
	Expectations from You
	Your Expectations
	Your Expectations
	Quick Quizzes (QQs)
	Quick Quizzes (QQs)
	Quick Quizzes (QQs)
	Quick Quizzes (QQs)
	QQ #1 (Ungraded)
	Assignments / Exercises
	Assignments / Exercises
	Assignments / Exercises
	Assignments / Exercises
	Using Program Analysis
	Using Program Analysis
	Using Program Analysis
	Using Program Analysis
	Using Program Analysis
	Code Optimization
	Code Optimization
	Code Optimization
	Code Optimization
	Machine Independent Optimizations
	Motivational Example
	Motivational Example
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Benefits
	Benefits
	Machine Dependent Optimizations
	Peephole Optimization
	Peephole Optimization
	Peephole Optimization
	Peephole Optimization
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Unreachable code example …
	Unreachable code example …
	Unreachable code example …
	Unreachable code example …
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Peephole optimization examples…
	Course Logistics
	Proposed Evaluation
	Project
	Project
	Project
	Project
	Project
	Project
	Assignment #1
	Assignment #1
	Assignment #1
	Assignment #1

