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Expectations from You 
• Basic Compilers Knowledge 
• Write code 

– C/C++ for Assignments 

–C/C++/Java/Python for Project (Tentative)  

• Understand and modify large code base 
–GCC, LLVM, SOOT 

• Read state of the art research papers 
–Discussions in class 
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Quick Quizzes (QQs) 

• There will be small quizzes (10-15 
min duration) during the class. 

• These can be announced or un-
announced (surprize quizzes). 

• Always bring a pen and some 
loose papers to the class 

5 



QQ #1 (Ungraded) 

 
 
 
 
 

• What are the various phases of compilers that 
you know?  (5 minutes) 

6 

…. 
File.c File.asm 



Assignments / Exercises 

                                 
                   

                             
                              
        

                                   
7 



Assignments / Exercises 

• Short assignments to apply the 
lecture material.  

                             
                              
        

                                   
7 



Assignments / Exercises 

• Short assignments to apply the 
lecture material.  

• Assignments will have some 
written and some programming 
tasks.  

                                   
7 



Assignments / Exercises 

• Short assignments to apply the 
lecture material.  

• Assignments will have some 
written and some programming 
tasks.  

• 4-5 Assignments for the semester 
7 



Using Program Analysis 

                             
                                  
                                  

            
                                    

               

8 



Using Program Analysis 

• Compiler Code Optimizations 
                                  
                                  

            
                                    

               

8 



Using Program Analysis 

• Compiler Code Optimizations 
• Why are optimizations important? 
                                  

            
                                    

               

8 



Using Program Analysis 

• Compiler Code Optimizations 
• Why are optimizations important? 
• Why not write optimized code to 

begin with? 
                                    

               

8 



Using Program Analysis 

• Compiler Code Optimizations 
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Code Optimization 
• Machine Independent 

– Remove redundancy introduced by the 
Programmer 

– Remove redundancy not required by later phases 
of compiler 

– Take advantage of algebraic properties of 
operators 

• Machine dependent 
– Take advantage of the properties of target machine 

Optimization must preserve the semantics of the 
original program! 
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Machine Independent 
Optimizations 



Motivational Example 
void quicksort(int m, int n) 
/* recursively sort a[m] through a[n] */ 
{ 
  int i, j; 
  int v, x; 
  if(n <= m) return; 
  i = m – 1; j = n; v = a[n]; 
  while (1) { 
   do i = i+1; while (a[i] < v); 
    do j = j-1; while (a[j] > v); 
    if (i > j) break; 
    x = a[i]; a[i] = a[j]; a[j] = x; 
  } 
  x = a[i]; a[i] = a[n]; a[n] = x; 
  quicksort(m,j); quicksort(i+1,n); 
}  
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a[t2] = t5 
 
a[t4] = t3 
goto B2 

 
  
 
 
t14 = a[t1] 
a[t2] = t14 
 
a[t1] = t3 

B1 
B2 

B5 

B4 

B6 

B3 

Induction Variable elimination 



 
i = m-1 
j = n 
t1 = 4*n 
v = a[t1] 
t2 = 4*i 
t4 = 4*j 

 

 
 
t2 = t2+4 
t3 = a[t2] 
if t3<v goto B2 

 

 
 
t4 = t4-4 
t5 = a[t4] 
if t5>v goto B3 

 

if t2>=t4 goto B6 

 
 
 
 
 
a[t2] = t5 
 
a[t4] = t3 
goto B2 

 
 
 
 
t14 = a[t1] 
a[t2] = t14 
 
a[t1] = t3 

B1 
B2 

B5 

B4 

B6 

B3 

Dead Code elimination (again!) 



Benefits 
Block # Stmt before 

Optimizations 
# Stmt after 
Optimizations 

B1 4 6 

B2 4 3 

B3 4 3 

B4 1 1 

B5 9 3 

B6 8 3 
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Benefits 
Block # Stmt before 

Optimizations 
# Stmt after 
Optimizations 

B1 4 6 

B2 4 3 

B3 4 3 

B4 1 1 

B5 9 3 

B6 8 3 

28 

Assume: Unit cost for statements, 10 iterations of outer 
loop, 100 iterations of each inner loop 
Cost of execution:  
ORIGINAL:    1*4 + 100*4 + 100*4 + 10*1 + 10*9 + 1*8 = 912  
OPTIMIZED: 1*6 + 100*3 + 100*3 + 10*1 + 10*3 + 1*3 = 649 



Machine Dependent 
Optimizations 



Peephole Optimization 
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• target code often contains redundant 

instructions and suboptimal constructs 
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• examine a short sequence of target 
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Peephole Optimization 
• target code often contains redundant 

instructions and suboptimal constructs 
 

• examine a short sequence of target 
instruction (peephole) and replace by a 
shorter or faster sequence 

 
• peephole is a small moving window on the 

target systems 
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Peephole optimization examples… 

 Redundant loads and stores 
 

• Consider the code sequence 
 
  Move R0, a 
  Move a, R0 
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Peephole optimization examples… 

 Redundant loads and stores 
 

• Consider the code sequence 
 
  Move R0, a 
  Move a, R0 

 
• Instruction 2 can always be removed if it 

does not have a label. 

31 



Peephole optimization examples… 

Unreachable code 
• Consider following code sequence 
 #define debug 0 
 if (debug) { 
  print debugging info 
 } 
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Peephole optimization examples… 

Unreachable code 
• Consider following code sequence 
 #define debug 0 
 if (debug) { 
  print debugging info 
 } 
  
 this may be translated as 
  if debug == 1 goto L1 
  goto L2 
 L1: print debugging info 
 L2: 
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Peephole optimization examples… 

Unreachable code 
• Consider following code sequence 
 #define debug 0 
 if (debug) { 
  print debugging info 
 } 
  
 this may be translated as 
  if debug == 1 goto L1 
  goto L2 
 L1: print debugging info 
 L2: 

 
 Eliminate jumps 
  if debug != 1 goto L2 
   print debugging information  
 L2: 32 



Unreachable code example … 
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Unreachable code example … 
 constant propagation  
   if 0 <> 1 goto L2 
       print debugging information  
  L2: 
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Unreachable code example … 
 constant propagation  
   if 0 <> 1 goto L2 
       print debugging information  
  L2: 
 
 Evaluate boolean expression. Since if condition is always true the 

code becomes 
   goto L2 
   print debugging information 
  L2: 
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Unreachable code example … 
 constant propagation  
   if 0 <> 1 goto L2 
       print debugging information  
  L2: 
 
 Evaluate boolean expression. Since if condition is always true the 

code becomes 
   goto L2 
   print debugging information 
  L2: 
 
 The print statement is now unreachable. Therefore, the code 

becomes 
   
  L2: 

33 



Peephole optimization examples… 

• flow of control: replace jump over jumps 
 
  goto L1 
  … 
  … 
 L1 : goto L2 
     
                                
                               

34 

 goto L2 
  … 
  … 
    L1: goto L2 

by 



Peephole optimization examples… 

• flow of control: replace jump over jumps 
 
  goto L1 
  … 
  … 
 L1 : goto L2 
     
• Simplify algebraic expressions 
  remove x := x+0  or  x:=x*1 

34 

 goto L2 
  … 
  … 
    L1: goto L2 

by 



Peephole optimization examples… 
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Peephole optimization examples… 

• Strength reduction 
– Replace X^2 by X*X 
– Replace multiplication by left shift  
– Replace division by right shift 
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Peephole optimization examples… 

• Strength reduction 
– Replace X^2 by X*X 
– Replace multiplication by left shift  
– Replace division by right shift 

 
• Use faster machine instructions 
  replace  Add #1,R  
  by    Inc R 

35 



Course Logistics 

36 



Proposed Evaluation 
Assignments 5%-10% 
Course Project 30%-40% 

( Proposal 5% ) 
( Report 15% ) 

( Presentation 15% ) 
Mid semester exam 10%-20% 
End semester exam 25%-35% 
Quizzes/Class Participation 5% 

37 



Project 
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Project 
• Major part of the course 
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Project 
• Major part of the course 
• You need to implement some non-trivial 

analysis/optimization using one of the open 
source infrastructure 
– For e.g., some paper published in last 10 years 
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projects 

• Bonus marks for publishable results 
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Project 
• Major part of the course 
• You need to implement some non-trivial 

analysis/optimization using one of the open 
source infrastructure 
– For e.g., some paper published in last 10 years 

• You are encouraged to suggest your own 
projects 

• Bonus marks for publishable results 

• Individual OR Group of 2 
38 



Assignment #1 
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Assignment #1 
• Select one of the compiler 

infrastructure mentioned on the 
course webpage and 
a) Download it 
b) Build it 
c) Submit a report  
d) one page  about the infrastructure, and 

the optimizations present in it. 
e) one page about the most interesting 

optimization found, with example 
39 



Assignment #1 
• You can try more than one tool, even 

something not mentioned on the webpage. 
• But submit report for only one. 

– Preferably the one you plan to use for your 
project. 
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Assignment #1 
• You can try more than one tool, even 

something not mentioned on the webpage. 
• But submit report for only one. 

– Preferably the one you plan to use for your 
project. 

• DEADLINE: July 30th,  End of Day (before Midnight) 
• See course website for submission details (TBD) 

https://www.cse.iitb.ac.in/~karkare/cs618/ 

40 
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