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Abstract. We present a formal verification of the functional correctness
of the Muen Separation Kernel. Muen is representative of the class of
modern separation kernels that leverage hardware virtualization support,
and are generative in nature in that they generate a specialized kernel for
each system configuration. We propose a verification framework called
conditional parametric refinement which allows us to formally reason
about generative systems. We use this framework to prove the correctness
of Muen. Our analysis of several system configurations shows that our
technique is effective in producing mechanized proofs of correctness, and
also in identifying issues that may compromise the separation property.

1 Introduction

A separation kernel (SK) is a small specialized operating system or microkernel,
that provides a sand-boxed or “separate” execution environment for a given set
of processes (or “subjects”). The subjects may communicate only via declared
memory channels, and are otherwise isolated from each other. Unlike a general
operating system these kernels have a fixed set of subjects to run according
to a specific schedule on the different CPUs of a processor-based system. Such
kernels are often employed in security and safety-critical applications in military
and aerospace domains, and the correct functioning of the kernel is of critical
importance in guaranteeing the secure and timely execution of the subjects.

One way of obtaining a high level of assurance in the correct functioning of a
system is to carry out a refinement-based proof of functional correctness [17,18],
as has been done in the context of OS verification [22,31]. Here one specifies
an abstract model of the system’s behaviour, and then shows that the system
implementation conforms to the abstract specification. Such a proof subsumes
standard security properties related to separation, like no-exfiltration/infiltration
and temporal and spatial separation of subjects considered for instance in [16].

Our aim here is to carry out a similar refinement-based proof of functional
correctness for the Muen separation kernel [6], which is an open-source represen-
tative of a class of modern separation kernels (including commercial products
[13,25,27,34,36]) that use hardware virtualization support and are generative
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in nature. By the latter we mean that these tools take an input specification
describing the subjects and the schedule of execution, and generate a tailor-
made processor-based system that includes subject binaries, page tables, and a
kernel that acts like a Virtual Machine Monitor (VMM).

There are several challenges in carrying out such an exercise. Each generated
system employs a mix of Ada, Assembly, hardware virtualization features, and
complex 4-level paging structures, and is challenging to reason about as a stand-
alone system. However, the main challenge lies in reasoning about the generative
aspect of such a system: we need to show that for every possible input specifi-
cation, the kernel generator produces a correct system. A possible approach to
handle this challenge could be to verify the generator code, along the lines of
the CompCert project [24]. However with the generator code running close to
41K LOC, with little compositional structure, this would be a formidable task.
Translation validation [30] is another possibility but would require manual effort
from scratch each time.

We overcame the challenge of virtualization by simply choosing to model
the virtualization layer (in this case Intel’s VT-x layer) along with the rest
of the hardware components like registers and memory, programmatically in
software. Thus we modeled VT-x components like the per-CPU VMX-Timer
and EPTP as 64-bit variables in Ada, and implicit structures like the VMCS
as a record with appropriate fields as specified by Intel [19]. Instructions like
VMLAUNCH were then implemented as methods that accessed these variables.
In many ways, virtualization turned out to be more of a boon than a bane. We
solved the problem of generativeness (and the problem of handling page tables
too), by leveraging a key feature of such systems: the kernel is essentially a
template which is largely fixed, independent of the input specification. The kernel
accesses variables which represent input-specific details like subject details and
the schedule, and these structures are generated by Muen based on the given
input specification. The kernel can thus be viewed as a parametric program,
much like a method that computes using its formal parameter variables. In fact,
taking a step back, the whole processor system generated by Muen can be viewed
as a parametric program with parameter values like the schedule, subject details,
page tables, and memory elements being filled in by the generator based on the
input specification. This view of Muen as a parametric program turned out to
be the key enabler for us.

Such a view suggests a novel two-step technique for verifying generative sys-
tems that can be represented as parametric programs. We call this approach
conditional parametric refinement. We first perform a general verification step
(independent of the input spec) to verify that the parametric program refines
a parametric abstract specification, assuming certain natural conditions on the
parameter values (for example injectivity of the page tables) that are to be filled
in. This first step essentially tells us that for any input specification P , if the
parameter values generated by the system generator satisfy the assumed condi-
tions, then the generated system is correct vis-a-vis the abstract specification. In
the second step, which is input-specific, we check that for a given input specifi-
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cation, the generated parameter values actually satisfy the assumed conditions.
This gives us an effective verification technique for verifying generative systems
that lies somewhere between verifying the generator and translation validation.

We carried out the first step of this proof technique for Muen, using the
Spark Ada [2] verification environment. The effort involved about 20K lines of
source code and annotation. No major issues were found, modulo some subjec-
tive assumptions we discuss in Sect. 4.3. We have also implemented a tool that
automatically and efficiently performs the Step 2 check for a given SK configura-
tion. The tool is effective in proving the assumptions, leading to machine-checked
proofs of correctness for 16 different input configurations, as well as in detect-
ing issues like undeclared sharing of memory components in some seeded faulty
configurations.

In the sequel we sketch the main components of our theory and its application
to the verification of Muen. For further details we refer the reader to the longer
version [15].

2 Conditional Parametric Refinement

2.1 Machines and Refinement

A convenient way to reason about systems such as Muen is to view them as an
Abstract Data Type or machine [1]. A machine A is essentially a set of states
along with a set of operations, each of which takes an argument, transforms the
current state, and returns an output value. We have a designated intialization
operation called init . The machine A induces a transition system TA in a natural
way, whose states are the states of A, and transitions from one state to another
are labelled by triples of the form (n, a, b), representing that operation n with
input a was invoked and the return value was b. We denote the language of
initialized sequences of operation calls produced by this transition system, by
Linit(A).

We will consider machines represented as a program in an imperative pro-
gramming language. Valuations for the variables of the program make up the
state of the machine, while each operation n is given by a method definition of
the same name. We call such a program a machine program. Figure 1(a) shows
a program in a C-like language, that represents a “set” machine with operations
init , add and elem. The set stores a subset of the numbers 0–3, in a Boolean
array of size 4. However, for certain extraneous reasons, it uses an array T to
permute the positions where information for an element x is stored. Thus to
indicate that x is present in the set the bit S[T [x]] is set to true.

Refinement [1,17,18] is a way of saying that a “concrete” machine conforms
to an “abstract” one, behaviourally. In our setting of total and deterministic
machines, we say that machine B refines machine A if Linit(B) ⊆ Linit(A).
Refinement is typically exhibited using a “gluing” relation ρ which relates the
states of B to those of A. We say ρ is adequate to show that B refines A if it
satisfies the conditions: (init) the states of B and A after initialization are related
by ρ, and (sim) if states p and q are related by ρ then after doing any operation n
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Fig. 1. (a) A machine program P implementing a set machine, (b) an abstract specifica-
tion A and gluing relation, (c) a parametric machine program Q[Usize, T ] representing
a parametric set machine, and (d) abstract parametric specification B[absUsize] and
parametric gluing predicate.

with input a in these states, the output values agree and the resulting states are
again ρ-related. To check the adequacy of a gluing relation, we can use Floyd-
Hoare logic based code-level verification tools (like VCC [7] for C, or GNAT
Pro [2] for Ada Spark), to phrase the refinement conditions (init) and (sim) as
pre/post annotations and carry out a machine-checked proof of refinement [12].
Figure 1(b) shows an abstract specification and a gluing relation, for the set
machine program of part (a).

2.2 Generative Systems and Parametric Refinement

A generative system is a program G that given an input specification I (in some
space of valid inputs), generates a machine program PI . As an example, one can
think of a set machine generator SetGen, that given a number k of type unsigned
int (representing the universe size), generates a program Pk similar to the one
in Fig. 1(a), which uses the constant k in place of the set size 4, and an array
Tk of size k, which maps each x in [0..k−1] to (x + 1)mod k. For every I, let
us say we have an abstract machine (again similar to the one in Fig. 1(b)) say
AI , describing the intended behaviour of the machine PI . Then the verification
problem of interest to us, for the generative system G, is to show that for each
input specification I, PI refines AI . This is illustrated in Fig. 2(a). We propose
a way to address this problem using refinement of parametric programs, which
we describe next.

Parametric Refinement. A parametric program is like a standard program,
except that it has certain read-only variables which are left uninitialized. These
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uninitialized variables act like “parameters” to the program. We denote by P [V̄ ]
a parametric program P with a list of uninitialized variables V̄ . As such a para-
metric program has no useful meaning, but if we initialize the variables V̄ with
the values v̄ passed to the program, we get a standard program which we denote
by P [v̄]. Let N be a set of operation names. A parametric machine program of
type N is a parametric program Q[V̄ ] containing a method fn for each operation
n ∈ N . The input/output types of fn may be dependent on and derived from
the parameter values. Given a parameter value v̄ for V̄ , we obtain the machine
program Q[v̄]. Each method fn now has a concrete input/output type which
we denote by I v̄n and Ov̄

n respectively. Figure 1(c) shows an example parametric
machine program Q[Usize, T ], representing a parametric version of the set pro-
gram in Fig. 1(a). Given a value 4 for Usize and a list [1, 2, 3, 0] for T , we get the
machine program Q[4, [1, 2, 3, 0]], which behaves similar to the one of Fig. 1(a).
We note that the input type of the methods add and elem depend on the value
of the parameter Usize.

Given two parametric machine programs Q[V̄ ] and B[Ū ] of type N , we are
interested in exhibiting a refinement relation between instances of Q[V̄ ] and
B[Ū ]. Let R be a relation on parameter values ū for Ū and v̄ for V̄ , given by a
predicate on the variables in Ū and V̄ . We say that Q[V̄ ] parametrically refines
B[Ū ] w.r.t. the condition R, if whenever two parameter values ū for Ū and v̄
for V̄ are such that R(ū, v̄) holds, then Q[v̄] refines B[ū]. We propose a way to
exhibit such a conditional refinement using a single “universal” gluing relation.
A parametric gluing relation on Q[V̄ ] and B[Ū ] is a relation π on the state
spaces SQ of Q[V̄ ] and SB of B[Ū ], given by a predicate on the variables of
Q[V̄ ] and B[Ū ]. We say π is adequate, with respect to the condition R, if the
following conditions are satisfied. In the conditions below, we use the standard
Hoare triple notation for total correctness {G} P {H}, to mean that a program
P , when started in a state satisfying predicate G, always terminates in a state
satisfying H. We use the superscript Q or B to differentiate the components
pertaining to the programs Q[V̄ ] and B[Ū ] respectively, and assume that the
programs have disjoint state spaces.

1. (type) For each n ∈ N : R(ū, v̄) =⇒ (IQ,v̄
n = IB,ū

n ∧ OQ,v̄
n = OB,ū

n ).

2. (init) {R} initB(); initQ() {π}.

3. (sim) For each n ∈ N : {R ∧ π} rB := fB
n (a); rQ := fQ

n (a) {π ∧ rB = rQ}.

We can now state the following theorem:

Theorem 1. Let Q[V̄ ] and B[Ū ] be parametric machine programs of type N .
Let R be a predicate on Ū and V̄ , and let π be an adequate parametric gluing
relation for Q[V̄ ] and B[Ū ] w.r.t. R. Then Q[V̄ ] parametrically refines B[Ū ]
w.r.t. the condition R. ��

Consider the parametric machine program Q[Usize, T ] in Fig. 1(c), and the
abstract parametric program in Fig. 1(d), which we call B[absUsize]. Consider
the condition R which requires that absUsize = Usize and T to be injective. Let
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π be the parametric gluing predicate ∀x : unsigned, (x < Usize) =⇒ S[T [x]] =
absS[x]). Then π can be seen to be adequate w.r.t. the condition R, and thus
Q[Usize, T ] parametrically refines B[absUsize] w.r.t. R.

Verifying Generative Systems using Parametric Refinement. Consider a gener-
ative system G that given a specification I, generates a machine program PI by
filling a template with values derived from I, and let AI be the abstract specifi-
cation for input I. Recall that our aim is to show that for each I, PI refines AI .
We achieve this by applying the following steps:

1. Associate a parametric program Q[V ] with G, such that for each I, G can
be viewed as generating the value vI for the parameter V , so that Q[vI ] is
behaviourally equivalent to PI . Q[V ] can be constructed from the template
which is filled by G.

2. Construct a parametric abstract specification B[U ], and concrete value uI for
each I, such that AI is equivalent to B[uI ].

3. Construct a condition R on the parameters U and V , and show that Q[V ]
parametrically refines B[U ] w.r.t. R, using an adequate gluing predicate.

4. For a given I, check if uI and vI satisfy R. If so, conclude that PI refines AI .

We note that the Steps 1–3 are done only once for G, while the last step needs
to be done for each I of interest. Figure 2 illustrates this approach.

As a final illustration in our running example, to verify the correctness of
the set machine generator SetGen, we use the parametric programs Q[Usize, T ]
and B[absUsize] to capture the concrete program generated and the abstract
specification respectively. We then show that Q[Usize, T ] parametrically refines
B[absUsize] w.r.t. the condition R, using the gluing predicate π, as described
above. We note that the actual values generated for the parameters in this case
(recall that these are values for the parameters Usize, absUsize and T ) do indeed
satisfy the conditions required by R, namely that Usize and absUsize be equal,
and T be injective. Thus we can conclude that for each input universe size k,
the machine program Pk refines Ak, and we are done.

)c()b()a(

R

B[U ]

Q[V ]

I

AI

PI

G
I

G

PI

AI

∀I :

AI ≡ B[uI ]

PI ≡ Q[vI ]

∀I s.t.R(uI , vI) :

Fig. 2. Proving correctness of a generative system using parametric refinement. (a) The
goal, (b) proof artifacts and obligation, and (c) the guarantee. Dashed arrows represent
refinement, dashed arrow with R at tail represents conditional refinement w.r.t. R.
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3 The Muen Kernel Generator

3.1 Intel X86/64 Processor

The kernel that Muen generates runs on an x86/64 processor with VMX sup-
port. We briefly describe this platform (see [19] for more details) and how to
view a processor-based system as a machine. Figure 3 depicts the processor sys-
tem and its components. The CPU components like the 64-bit general purpose
registers, model-specific registers like the Time Stamp Counter (TSC), and phys-
ical memory components are standard. The layer above shows components like
the VMCS pointer (VMPTR), the VMX-timer, and extended page table pointer
(EPTP), which are part of the VT-x layer of the VMX mode that supports vir-
tualization. The VMPTR on each CPU points to a VMCS structure, which is
used by the VMM (here the kernel) to control launch/exit of subjects. The CR3
register and the EPTP component (set by the active VMCS) control the virtual-
to-physical address translation. The top-most layer shows the kernel code that
runs on each CPU, with an “Init” component that runs on system initialization,
and a “Handler” component that handles VM-exits due to interrupts. The Muen
kernel essentially runs as a VMM, and subjects as VMs provided by the VMM.
To launch a subject in a VM, the kernel sets the VMPTR to point to one of the
VMCSs using the VMPTRLD instruction, and then calls VMLAUNCH which
sets the timer, CR3, and EPTP components from the VMCS fields. A subject is
caused to exit its VM and return control to the kernel by events like VMX-timer
expiry, page table exceptions, and interrupts.

We would like to view such a processor system as a machine of Sect. 2.1. The
state of the machine is the contents of all its components. The operations are
(a) Init, where the init code of the kernel is executed on each of the processors
starting with the BSP (CPU0); (b) Execute, which takes a CPU id and executes
the next instruction pointed to by the IP on that CPU. The instruction could be
one that does not access memory (like add), or one that accesses memory (like
mov) in which case the given address is translated via the page tables pointed
to by the CR3 and EPTP components; or (c) Event, which could be timer tick
event on a CPU causing the TSC to increment and the VMX-timer of the active

CPU1 CPU2 CPU3

Ker1 Ker2 Ker3

PT Memory

Timer

VMPTRVMPTR

Timer

VMPTR

Timer Timer EPTP

CR3CR3CR3CR3

EPTPEPTPEPTP

VMCS
Policy

System
Gen

Muen

CPU0

Ker0

VMPTR

Handler

InitInit

Handler Handler

Init

Handler

Init

Fig. 3. An x86/64bit VMX processor. Shaded components are generated by Muen.
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VM to decrement. If the VMX-timer becomes 0, a VM exit is caused and the
corresponding handler invoked. Another kind of event is generated by external
interrupts. External interrupts cause a VM exit. The cause of all VM exits is
stored in the subject’s VMCS, which the handler checks and takes appropriate
action for.

3.2 Policy Specification

Virt Mem

Sub0

Chan (W)

Virt Mem

Sub1

Chan (R)

Channel Mem

The input specification to Muen is an XML file called
a policy. It specifies details of the host processor, sub-
jects to be run, and a precise schedule of execution on
each CPU of the host processor system. For each sub-
ject the policy specifies the size and starting addresses
of the components in its virtual memory which could
include shared memory components called channels.
The policy specifies the size and location of each channel in a subject’s virtual
address space, and read/write permissions, as depicted alongside.

The schedule is a sequence of major frames to be performed repeatedly. A
major frame specifies for each CPU a sequence of minor frames, which specifies
a subject and the number of ticks to run it. The beginning of each major frame
is a synchronization point for the CPUs. An example scheduling policy in XML
is shown in Fig. 4(a), while Fig. 4(b) shows the same schedule viewed as a clock.
The shaded portion depicts the passage of time (the tick count) on each CPU.

Fig. 4. (a) Example schedule, (b) its clock view, and (c) its implementation in Muen.

3.3 Muen Kernel Generator

Given a policy C, Muen generates the components of a processor system SC ,
which is meant to run according to the specified schedule. This is depicted
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in Fig. 3, where the Muen toolchain generates the shaded components of
the processor system, like the initial memory contents, page tables, and ker-
nel code. The toolchain generates a kernel for each CPU, to orchestrate the
execution of the subjects according to the specified schedule on that CPU.
The kernel is actually a template of code written in Spark Ada, and the
toolchain generates the constants for this template based on the given policy.

Fig. 5. Components of the generated ker-
nel. Shaded components are generated by
the toolchain.

The kernel uses data structures like
subject-specs to store details like page
table and VMCS address for each sub-
ject. To implement scheduling, the
kernel uses a multidimensional array
called scheduling-plans representing
the schedule for each CPU. The kernel
knows the number of ticks elapsed on
each CPU from the TSC register. It
uses a shared variable called CMSC,
which is updated by the BSP, to keep
track of the start of the current major
frame, as shown in Fig. 4(c). The
structure vector -routing is also gener-
ated by the toolchain to represent the
table which maps an interrupt vector
to the corresponding destination sub-
ject and the destination vector to be
sent to the destination subject. The
kernel also uses a data structure called global -events for each subject to save
pending interrupts when the destination subject is not active. The components
of the kernel are shown in Fig. 5.

At system startup the Init part of the kernel performs the initialization tasks
like setting up the VMCS for each subject, making use of the subject-specs
structure generated by Muen. The handler part of the kernel is invoked whenever
there is a VM exit. For instance if the exit is due to a VMX-timer expiry, it uses
scheduling-plans to decide whether to schedule the subject in the next minor
frame, or to wait for synchronization at the end of a major frame. If the exit is
due to an external interrupt, it uses vector -routing to decide the subject which
will handle the interrupt, and the destination vector which should be sent to
the handler subject. The structure global -events is used to store the pending
interrupt. When the handler subject becomes active, the pending interrupt is
injected via the VMCS and the pending interrupt is removed from global -events.

We have focussed on Ver. 0.7 of Muen. The toolchain implemented in Ada
and C, comprises about 41K LoC, while the kernel template is about 3K LoC in
Ada.
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4 Proof Overview

Given a policy C, let SC denote the processor system generated by Muen. Let TC

denote an abstract machine spec for the system SC (we describe TC next). Our
aim is to show that for each valid policy C, SC refines TC . We use the parametric
refinement technique of Sect. 2 to do this. We first
define a parametric program Q[V̄ ] that models the
generic system generated by Muen, so that for a
given policy C, if v̄C corresponds to the parameter
values generated by Muen, then SC and Q[v̄C ] are
behaviourally equivalent. In a similar way we define the abstract parametric
program B[Ū ], so that with appropriate parameters ūC , B[ūC ] captures the
abstract spec TC . Next we show that Q[V̄ ] parametrically refines B[Ū ] w.r.t.
a condition R. The figure alongside shows the proof artifacts and obligations.
Finally, for a given policy C, we check that the parameter values ūC and v̄C
satisfy the condition R. In the rest of this section we elaborate on the components
and steps of this proof.

4.1 Abstract Specification

The abstract specification TC implements a simple system that realizes the
behaviour specified by a policy C. In TC each subject s is run on a separate,
dedicated, single-CPU processor system Ms. The system Ms has its own CPU
with registers, and 264 bytes of physical memory VMem with permissions as
specified in the policy. The policy maps each subject to a CPU of the concrete
machine on which it is meant to run. To model this we use a set of logical CPUs
(corresponding to the number of CPUs specified in the policy), and we associate
with each logical CPU, the (disjoint) group of subjects mapped to that CPU.
Figure 6 shows a schematic representation of TC . To model channels, we use a
separate memory array chmem, as depicted in Sect. 3.2. Memory contents for
a subject s are fetched from VMems or from chmem accordingly. There is no
kernel in this system, but a supervisor whose job is to process events directed
to a logical CPU or subject, and to enable and disable subjects based on the
scheduling policy and the current “time”. Towards this end it maintains a flag
enableds for each subject s, which is set whenever the subject is enabled to run
based on the current time. To implement the specified schedule it keeps track of
time using the clock-like abstraction depicted in Fig. 4(b).

In the init operation the supervisor initializes the processor systems Ms,
permissions array perms, the channel memory chmem, and also the schedule-
related variables, based on the policy. The execute operation, given a logical CPU
id, executes the next instruction on the subject machine currently active for that
logical CPU id. An execute operation does not affect the state of other subject
processors, except possibly via the shared memory chmem. If the instruction
accesses an invalid memory address, the system is assumed to shut down in
an error state. Finally, for the event operation, which is a tick/interrupt event
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Fig. 6. Schematic diagram of the abstract spcecification TC

directed to a logical CPU or subject, the supervisor updates the scheduling state,
or pending event array, appropriately.

To represent the system TC concretely, we use an Ada program which we
call AC . AC is a programmatic realization of TC , with processor registers repre-
sented as 64-bit numeric variables, and memory as byte arrays of size 264. The
operations init , execute, and event are implemented as methods that implement
the operations as described above. Finally, we obtain a parametric program B[Ū ]
from AC , by parameterizing it as illustrated in Sect. 2. We call the list of param-
eters Ū . By construction, it is evident that if we generate appropriate values ūC

for the parameters in Ū , we will get a machine program B[ūC ] which is equivalent
in behaviour to AC .

4.2 Parametric Refinement Proof

We begin by describing how we view Muen as a parametric program. Let C be a
given policy. We first define a machine program PC that represents the processor
system SC generated by Muen. This is done similar to AC , except that we now
have a single physical memory array which we call PMem. Further, since the
processor system SC makes use of the VT-x components, we need to model these
components in PC as well. For example we represent each page table ptab, as
a 264 size array PT ptab of 64-bit numbers, with the translation ptab(a) of an
address a being modelled as PT ptab [a]. The operations init , execute, and event
are implemented as method calls. The init code comes from the Init component
of the kernel. In the execute method, memory accesses are translated via the
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active page table to access the physical memory PMem. The implementation
of the event operation comes from the Handler part of the kernel code. We
then move from PC to a parametric program Q[V̄ ], by using parameters such
as NSubs, scheduling-plans, subject-specs, PMem, and PT . Once again, for an
appropriate list of values v̄C generated by Muen from a given policy C, Q[v̄C ] is
equivalent to PC , which in turn is equivalent to SC .

Next we show that the parametric version of the Muen system Q[V̄ ] condi-
tionally refines the parametric abstract spec B[Ū ]. From Sect. 2.2, this requires
us to identify the condition R, and find a gluing relation π on the state of para-
metric programs Q and B such that the refinement conditions (type), (init), and
(sim) are satisfied. The key conjuncts of our condition R are:

– R1: The page tables ptabs associated with a subject s must be injective in that
no two virtual addresses, within a subject or across subjects, may be mapped
to the same physical address, unless specified to be part of a channel;

– R2: For each subject s, the permissions (rd/wr/ex/present) associated with
an address a should match with the permissions for a in ptabs;

– R3: For each subject s, no invalid virtual address is mapped to a physical
address by page table ptabs.

– R4: The values of the parameters (like NSubs, subject-specs, scheduling-plans
and IOBitmap) in the concrete should match with those in the abstract.

The gluing relation π has the following key conjuncts: The CPU register contents
of each subject in the abstract match with the register contents of the CPU
on which the subject is active, if the subject is enabled, and with the subject
descriptor, otherwise; For each subject s and valid address a in its virtual address
space, the contents of VMems(a) and PMem(ptabs(a)) should match; The value
(TSC − CMSC) on each CPU in the concrete, should match with how much the
ideal clock for the subject’s logical CPU is ahead of the beginning of the current
major frame in the abstract.

B[Ū ] Q[V̄ ] Combined

LoC LoA LoC LoA LoC LoA

793 0 1,914 0 13,970 6,214

We carry out the adequacy check for π,
described in Sect. 2.2, by constructing a “com-
bined” version of Q and B that has the dis-
joint union of their state variables, as well as
a joint version of their operations, and phrase
the adequacy conditions as pre/post conditions on the joint operations. We carry
out these checks using the Spark Ada tool [2] which uses provers Z3 [28], CVC4
[3], and Alt-Ergo [8] in the backend. We faced several challenges in carrying out
this proof to completion. For instance, to prove the kernel’s handling of the tick
event correct, we used 8 subcases to break up the reasoning into manageable
subgoals for both the engineer and the prover. The table alongside shows details
of our proof effort in terms of lines of code (LoC) and lines of annotations (LoA)
in the combined proof artifact. In the combined artifact the LoC count includes
comments and repetition of code due to case-splits. All the proof artifacts used
in this project are available at shorturl.at/ilqMU.
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4.3 Checking Condition R

We now describe how to efficiently check that for a given policy C, the parameters
generated by Muen and those of the abstract specification, satisfy the condition
R. A naive way to check R would be to iterate over the virtual addresses for each
subject and check the conditions. This runs in time O(Nv) where Nv is the size
of the virtual address space (typically 248), and would take days to run. Instead
we exploit the fact that the actual size of the memory components is relatively
small. We make use of Muen’s B-policy which defines the physical address and
size of physical memory segments, and the mapping of virtual components to it,
so that checking R1 reduces to checking overlap of physical components. To check
R3, we exploit the fact that translation of a valid virtual address uses certain
entries of paging structures which have their “present” bit set to 1. We check
that the present bit is set only in the entries which are used for translation of
valid virtual addresses. These checks run in time O(Nu) where Nu is the actual
used virtual address space of a subject.

We implemented our algorithms above in C and Ada, using the Libxml2
library to process policy files, and a Linux utility xxd to convert the Muen image
and individual files from raw format to hexadecimal format. We ran our tool on

System Sub CPU PMem Image Time Check
(MB) (MB) (s) Passed

D7 Bochs 8 4 527.4 13.8 3.7 �
DL conf1 8 4 506.5 12.9 3.7 �
DL conf2 9 4 1552.7 15.1 6.8 �
DL conf3 12 4 1050.1 23.3 6.7 �
DL conf4 16 4 1571.4 15.1 9.2 �
D9 Bochs 10 2 532.9 16.2 4.9 ✗

D9 vtd 16 4 1057.8 18.4 5.9 ✗

D9 IntelNuc 10 2 567.0 16.2 5.5 ✗

16 system configs, 9 of
which (D7-*,D9-*) were
available as demo config-
urations from Muen. The
remaining configs (DL-
*) were configured by
us to mimic a Multi-
Level Security (MLS) sys-
tem from [32]. Details of
representative configs are
shown alongside. We used
the 3 configs D9-* (from Ver. 0.9 of Muen) as seeded faults to test our tool.
Ver. 0.9 of Muen generates implicit shared memory components, and this unde-
clared sharing was correctly flagged by our tool. The average running time on
a configuration was 5.6s. The experiments were carried out on an Intel Core i5
machine with 4GB RAM running Ubuntu 16.04.

Discussion. We believe that the property we have proved for Muen (namely
conformance to an abstract specification via a refinement proof) is the canonical
security property needed of a separation kernel. However security standards often
require specific basic security properties to be satisfied. In [15] we discuss how
some of these properties mentioned in [11,16] follow from our proof.

The validity of the verification proof carried out in this work depends on
several assumptions we have made. Apart from implicit assumptions like page
table translation and VMX instructions behave the way we have modelled them,
we made explicit assumptions like the 64-bit TSC counter does not overflow (it
would take years to happen), and a minor frame length is never more than 232
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ticks. If any of these assumptions are violated, the proof will not go through, and
we would have counter-examples to conformance with the abstract specification.

Create
Conc Parametric

Program

Create
Combined
Program

Muen
Package Tool

Spark Ada Solvers Yes/No
VCs
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Program
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Parameters

(Muen)

Gen Concrete

Step 2
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Q[V̄ ]
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C

Fig. 7. Components in Muen verification. Untrusted components are shown shaded
while non-automated (manual) steps are shown with dashed boxes.

Finally, we show the various components used in our verification in Fig. 7.
Each box represents a automated tool (full boxes) or manual transformation
carried out (dashed boxes). Components that we trust in the proof are unshaded,
while untrusted components are shown shaded.

We would like to mention that the developers of Muen were interested in
adding our condition checking tool to the Muen distribution, as they felt it
would strengthen the checks they carry out during the kernel generation. We
have updated our tool to work on the latest version (v0.9) of Muen, and handed
it over to the developers.

5 Related Work

We classify related work based on general OS verification, verification of sepa-
ration kernels, and translation validation based techniques.

Operating System Verification. There has been a great deal of work in formal
verification of operating system kernels in the last few decades. Klein [20] gives
an excellent survey of the work till around 2000. In recent years the most com-
prehensive work on OS verification has been the work on seL4 [21], which gave
a refinement-based proof of the functional correctness of a microkernel using the
Isabelle/HOL theorem prover. They also carry out an impressive verification of
page table translation [35]. The CertiKOS project [14] provides a technique for
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proving contextual functional correctness across the implementation stack of a
kernel, and also handles concurrency. Other recent efforts include verification of
a type-safe OS [37], security invariants in ExpressOS [26], and the Hyperkernel
project [29].

While verification of a general purpose OS is a more complex task than ours—
in particular a general kernel has to deal with dynamic creation of processes
while in our setting we have a fixed set of processes and a fixed schedule—the
techniques used there cannot readily reason about generative kernels like Muen.
We would also like to note here that while it is true in such verification one often
needs to reason about parametric components (like a method that computes
based on its parameters), the whole programs themselves are not parametric.
In particular, a standard operating system is not parametric: it begins with a
concrete initial state, unlike a parametric program in which the initial state has
unitialized parameters. Thus the techniques developed in this paper are needed
to reason about such programs. Finally, we point out that none of these works
address the use of VT-x virtualization support.

Verification of Separation Kernels. There has been substantial work in formal
verification of separation kernels/hypervisors. seL4 [21] can also be configured as
a separation kernel, and the underlying proof of functional correctness was used
to prove information flow enforcement. Heitmeyer et al. [16] proved data sep-
aration properties using a refinement-based approach for a special-purpose SK
called ED, in an embedded setting. As far as we can make out these systems are
not generative in nature, and either do not use or do not verify hardware virtu-
alization support. Additionally, unlike our work, none of these works (including
OS verification works) are post-facto: they are developed along with verification.

Dam et al. [10] verify a prototype SK called PROSPER, proving informa-
tion flow security on the specification and showing a bisimulation between the
specification and the implementation. PROSPER works for a minimal configu-
ration with exactly two subjects, and is not a generative system. The Verisoft
XT project [4] attempted to prove the correctness of Microsoft’s Hyper-V hyper-
visor [23] and Sysgo’s PikeOS, using VCC [7]. While the Hyper-V project was
not completed, the PikeOS memory manager was proved correct in [5]. Sanan
et al. [33] propose an approach towards verification of the XtratuM kernel [9] in
Isabelle/HOL, but the verification was not completed.

Translation Validation Techniques. Our verification problem can also be viewed
as translation validation problem, where the Muen generator translates the input
policy specification to an SK system. The two kinds of approaches here aim to
verify the generator code itself (for example the CompCert project [24]) which
can be a challenging task in our much less structured, post-facto setting; or aim
to verify the generated output for each specific instance [30]. Our work can be
viewed as a via-media between these two approaches: we leverage the template-
based nature of the generated system to verify the generator conditionally, and
then check whether the generated parameter values satisfy our assumed condi-
tions.



320 I. Haque et al.

6 Conclusion

In this work we have proposed a technique to reason about template-based gen-
erative systems, and used it to carry out effective post-facto verification of the
separation property of a complex, generative, virtualization-based separation
kernel. In future work we plan to extend the scope of verification to address
concurrency issues that we presently ignore in this work.

Acknowledgement. We thank the developers of Muen, Reto Buerki and Adrian-Ken
Rueegsegger, for their painstaking efforts in helping us understand the Muen separation
kernel. We also thank Arka Ghosh for his help in the proof of interrupt handling.
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