Introduction to Blockchain
 Lecture 1: RSA, SHA and Digital Signatures

Ras Dwivedi

IIT Kanpur

May 21, 2018

Outline

(1) Introduction
(2) Cryptography
(3) RSA
(4) HASH function

Outline

(1) Introduction

(2) Cryptography

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{t h}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{t h}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{t h}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{t h}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins
- Mandatory to pass the quiz

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins
- Mandatory to pass the quiz
- Assignment

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins
- Mandatory to pass the quiz
- Assignment
- Would not be graded

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins
- Mandatory to pass the quiz
- Assignment
- Would not be graded
- just for practice

Course Logistic

- Week 1 ($21^{\text {st }}$ May to $25^{\text {th }}$ May)
- Blockchain
- Week 2 ($28^{\text {st }}$ May to $1^{\text {st }}$ June)
- Software Security
- Attendance: Compulsory
- Passing this course requires satisfactory number of classes to be attended
- Quiz:
- 1 on $1^{\text {st }}$ June
- Would have questions from both the section
- Duration: About 30 mins
- Mandatory to pass the quiz
- Assignment
- Would not be graded
- just for practice

Blockchain

Blockchain

- RSA, SHA and Digital Signatures

Blockchain

- RSA, SHA and Digital Signatures
- Introduction to Cryptocurrency and Bitcoin

Blockchain

- RSA, SHA and Digital Signatures
- Introduction to Cryptocurrency and Bitcoin
- Introduction to Ethereum and Mist

Blockchain

- RSA, SHA and Digital Signatures
- Introduction to Cryptocurrency and Bitcoin
- Introduction to Ethereum and Mist
- Hands on Mist and Geth

Blockchain

- RSA, SHA and Digital Signatures
- Introduction to Cryptocurrency and Bitcoin
- Introduction to Ethereum and Mist
- Hands on Mist and Geth
- Byzantine General Problem

Blockchain

- RSA, SHA and Digital Signatures
- Introduction to Cryptocurrency and Bitcoin
- Introduction to Ethereum and Mist
- Hands on Mist and Geth
- Byzantine General Problem

Outline

(1) Introduction

(2) Cryptography

Cryptography

Cesar Cipher

Figure: Cesar Cipher!!

RAS - > UDV

Symmetric key Cryptography

SYMMETRIC CRYPTOGRAPHY

Public key cryptography

Outline

(1) Introduction

(2) Cryptography
(3) RSA

(4) HASH function

Factoring is hard

Factoring is hard

$$
6=2 \times 3
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! }
\end{aligned}
$$

Factoring is hard

$$
6=2 \times 3
$$

Convince yourself that factoring is hard!! $100=$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& 100=10 \times 10=2 \times 2 \times 5 \times 5
\end{aligned}
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& 100=10 \times 10=2 \times 2 \times 5 \times 5 \\
& 299=
\end{aligned}
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& \begin{array}{l}
100=10 \times 10=2 \times 2 \times 5 \times 5 \\
299=13 \times 23
\end{array}
\end{aligned}
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& 100=10 \times 10=2 \times 2 \times 5 \times 5 \\
& 299=13 \times 23 \\
& 437=
\end{aligned}
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& \begin{array}{l}
100=10 \times 10=2 \times 2 \times 5 \times 5 \\
299=13 \times 23 \\
437=19 \times 23
\end{array}
\end{aligned}
$$

Factoring is hard

$$
\begin{aligned}
& 6=2 \times 3 \\
& \text { Convince yourself that factoring is hard!! } \\
& 100=10 \times 10=2 \times 2 \times 5 \times 5 \\
& 299=13 \times 23 \\
& 437=19 \times 23 \\
& 589=19 \times 31 \\
& \text { So how to use it? }
\end{aligned}
$$

Fermat's little theorem

$$
a^{p-1}=1 \text { modulo } p
$$

Fermat's little theorem

$a^{p-1}=1$ modulo p
p is prime

Fermat's little theorem

$a^{p-1}=1$ modulo p
p is prime
Example
$2^{4} \% 5=$

Fermat's little theorem

$a^{p-1}=1$ modulo p
p is prime
Example
$2^{4} \% 5=16 \% 5=1$

Fermat's little theorem

$$
\begin{aligned}
& a^{p-1}=1 \text { modulo } p \\
& p \text { is prime } \\
& \text { Example } \\
& 2^{4} \% 5=16 \% 5=1 \\
& 4^{10} \% 11
\end{aligned}
$$

Fermat's little theorem

$$
\begin{aligned}
& a^{p-1}=1 \text { modulo } p \\
& p \text { is prime } \\
& \text { Example } \\
& 2^{4} \% 5=16 \% 5=1 \\
& 4^{10} \% 11=1048576 \% 11=1
\end{aligned}
$$

RSA

RSA

- proposed by Rivest,Shamir,Adleman
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{lcm}(p-1, q-1)$

RSA

- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{lcm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$

RSA

- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{lcm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi$
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{Icm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi \longrightarrow e \times d=1 \bmod \phi$
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{Icm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi \longrightarrow e \times d=1 \bmod \phi$
- Idea: $m^{e \times d}=m^{e^{d}}=m$ modulo n
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{Icm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi \longrightarrow e \times d=1 \bmod \phi$
- Idea: $m^{e \times d}=m^{e^{d}}=m$ modulo n
- encryption: $c=m^{e} \bmod n$
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{Icm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi \longrightarrow e \times d=1 \bmod \phi$
- Idea: $m^{e \times d}=m^{e^{d}}=m$ modulo n
- encryption: $c=m^{e} \bmod n$
- decryption: $p=c^{d} \bmod n$
- proposed by Rivest,Shamir,Adleman
- choose two large distinct prime number p, q
- calculate $n=p q$
- calculate $\phi=\operatorname{Icm}(p-1, q-1)$
- choose e such that $\operatorname{gcd}(e, \phi)=1$
- calculate d such that $d=e^{-1} \bmod \phi \longrightarrow e \times d=1 \bmod \phi$
- Idea: $m^{e \times d}=m^{e^{d}}=m$ modulo n
- encryption: $c=m^{e} \bmod n$
- decryption: $p=c^{d} \bmod n$

RSA: Example

- $p=5$,

RSA: Example

- $p=5, q=7$

RSA: Example

- $p=5, q=7 p \times q=35$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
- $m=2$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
- $m=2$
$c=m^{e} \bmod n$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11, c=18$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11, c=18$
- $m=c^{d} \bmod n$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11, c=18$
- $m=c^{d} \bmod n$
$m=18^{11} \bmod 35$
$=64268410079232 \% 35$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11, c=18$
- $m=c^{d} \bmod n$
$m=18^{11} \bmod 35$
$=64268410079232 \% 35$

RSA: Example

- $p=5, q=7 p \times q=35$
- $p-1=4, q-1=6, \phi=24$

Oops! $\phi=12$, but 24 would still work

- $e=11, d=11$
$e \times d=121$
$24 \times 5=120$
$121 \% 24=1$
$m=2$
$c=m^{e} \bmod n$
$=2^{11} \bmod 35$
$c=2048 \bmod 35 ; c=18(35 \times 58=2030)$
Decryption
- $d=11, c=18$
- $m=c^{d} \bmod n$
$m=18^{11} \bmod 35$
$=64268410079232 \% 35$

RSA: Example

- $p=7$,

RSA: Example

- $p=7, q=13$

RSA: Example

- $p=7, q=13 p \times q=91$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$ Decryption
- $d=47$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$ Decryption
- $d=47, c=71$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$ Decryption
- $d=47, c=71$
- $m=c^{d} \bmod n$

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$ Decryption
- $d=47, c=71$
- $m=c^{d} \bmod n$
$m=71^{29} \bmod 91$
$=$
485838707624806667708811381704053376792688975925323431\%91

RSA: Example

- $p=7, q=13 p \times q=91$
- $p-1=6, q-1=12, \phi=72$

Oops! $\phi=12$, but 72 would still work

- $e=5, d=29$
$72 \times 2=144$
$5 \times 29=145$
$(145) \% 72==1$
- $m=15 c=m^{e} \bmod n$
$=15^{5} \bmod 91$
$c=759375 \bmod 91 ; c=71$ Decryption
- $d=47, c=71$
- $m=c^{d} \bmod n$
$m=71^{29} \bmod 91$
$=$
485838707624806667708811381704053376792688975925323431\%91
$m=15$

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document
- simple pasting a copy of signature do not work

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document
- simple pasting a copy of signature do not work
- IDEA: USE RSA

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document
- simple pasting a copy of signature do not work
- IDEA: USE RSA
- for document m Alice uses $s=m^{d}$ as her digital signature. To verify, verifier calculates s^{e} and if $m=s^{e} \bmod n$, signature is genuine

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document
- simple pasting a copy of signature do not work
- IDEA: USE RSA
- for document m Alice uses $s=m^{d}$ as her digital signature. To verify, verifier calculates s^{e} and if $m=s^{e} \bmod n$, signature is genuine
- d is called Alice's secret key and e is called Alice's Public key

Digital signature Attempt 1

- AIM: Convince everybody that Alice have signed the document
- nobody should be able to forge the document
- simple pasting a copy of signature do not work
- IDEA: USE RSA
- for document m Alice uses $s=m^{d}$ as her digital signature. To verify, verifier calculates s^{e} and if $m=s^{e} \bmod n$, signature is genuine
- d is called Alice's secret key and e is called Alice's Public key

Is the Scheme secure?

Is the Scheme secure?

No!

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated
- given document $m, s=m^{d}$ could not be guessed.

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated
- given document $m, s=m^{d}$ could not be guessed.
- Problem: forging given m_{1}, m_{2} as two document, and s_{1}, s_{2} as their digital signature, one can find the valid signature of $m_{1} \cdot m_{2}$ as $s_{1} \cdot s_{2}$

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated
- given document $m, s=m^{d}$ could not be guessed.
- Problem: forging given m_{1}, m_{2} as two document, and s_{1}, s_{2} as their digital signature, one can find the valid signature of $m_{1} \cdot m_{2}$ as $s_{1} \cdot s_{2}$
- Also the length of the signature is proportional to the size of the document

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated
- given document $m, s=m^{d}$ could not be guessed.
- Problem: forging given m_{1}, m_{2} as two document, and s_{1}, s_{2} as their digital signature, one can find the valid signature of $m_{1} \cdot m_{2}$ as $s_{1} \cdot s_{2}$
- Also the length of the signature is proportional to the size of the document
- slow

Is the Scheme secure?

No!

- given (n, e) private key of Alice cannot be calculated
- given document $m, s=m^{d}$ could not be guessed.
- Problem: forging given m_{1}, m_{2} as two document, and s_{1}, s_{2} as their digital signature, one can find the valid signature of $m_{1} \cdot m_{2}$ as $s_{1} \cdot s_{2}$
- Also the length of the signature is proportional to the size of the document
- slow

What could we do now?

Outline

(1) Introduction

(2) Cryptography
(3) RSA

4) HASH function

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x
- given x_{1} its is impossible to find x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x
- given x_{1} its is impossible to find x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
- it is impossible to find x_{1}, x_{2}, such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x
- given x_{1} its is impossible to find x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
- it is impossible to find x_{1}, x_{2}, such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$

Lets understand by example

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match.

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong.

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong. I publish Hash of tomorrow's score as: "a34728bfed78dc89..."

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong. I publish Hash of tomorrow's score as: "a34728bfed78dc89..."

- can you tell what score I had in Mind?

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong. I publish Hash of tomorrow's score as: "a34728bfed78dc89..."

- can you tell what score I had in Mind?
- can I later change the score I thought before?

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong. I publish Hash of tomorrow's score as: "a34728bfed78dc89..."

- can you tell what score I had in Mind?
- can I later change the score I thought before?
- can I purposely find hash such that two score are possible for that hash?

Example: Hash Function

Suppose I can see Future. So I can foretell score of tomorrow's IPL's match. But If I tell score before, you can always change it and prove me wrong. I publish Hash of tomorrow's score as: "a34728bfed78dc89..."

- can you tell what score I had in Mind?
- can I later change the score I thought before?
- can I purposely find hash such that two score are possible for that hash?

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x
- given x_{1} its is impossible to find x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
- it is impossible to find x_{1}, x_{2}, such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$

SHA: Secure Hash Functions

An Ideal Hash function is one which has following properties

- given $f(x)$ it is impossible to guess x
- given x_{1} its is impossible to find x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
- it is impossible to find x_{1}, x_{2}, such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ Difference between $2^{\text {nd }}$ and $3^{\text {rd }}$ condition?

Merkle Demgrad Construction

Need of Padding message m ?

Merkle Demgrad Construction

Need of Padding message m ?

- m is prefix of $\operatorname{PAD}(m)$

Merkle Demgrad Construction

Need of Padding message m ?

- m is prefix of $P A D(m)$
- if $\left|m_{1}\right|=\left|m_{2}\right|$ then $\left|P A D\left(m_{1}\right)\right|=\left|\operatorname{PAD}\left(m_{2}\right)\right|$

Merkle Demgrad Construction

Need of Padding message m ?

- m is prefix of $\operatorname{PAD}(m)$
- if $\left|m_{1}\right|=\left|m_{2}\right|$ then $\left|P A D\left(m_{1}\right)\right|=\left|P A D\left(m_{2}\right)\right|$
- if $\left|m_{1}\right| \neq\left|m_{2}\right|$ then the last block of $\operatorname{PAD}\left(m_{1}\right) \neq \operatorname{PAD}\left(m_{2}\right)$

Merkle Demgrad Construction

Need of Padding message m ?

- m is prefix of $\operatorname{PAD}(m)$
- if $\left|m_{1}\right|=\left|m_{2}\right|$ then $\left|P A D\left(m_{1}\right)\right|=\left|P A D\left(m_{2}\right)\right|$
- if $\left|m_{1}\right| \neq\left|m_{2}\right|$ then the last block of $\operatorname{PAD}\left(m_{1}\right) \neq \operatorname{PAD}\left(m_{2}\right)$

