Minimizing the Sum of Absolute Deviations

In some applications, we are given several linear objective functions of the decision variables,

               zt(x)  =  ct1x1 + . . . . +  ctnxn  =  d,         t = 1  to  k             (1)

 

             where  dt  is the desired values. In addition may be required to satisfied a specified system of linear constraints constraints, which we denote by ( P ).

The problem is than to find a solution  x  satisfying the constraints in ( P ) and the ( 1 ).

Now if there is a solution than it is the best solution for this problem. However, it may possible that ( P ) and ( 1 ) together may not have feasible solution. In this case, a feasible solution of ( P ) which minimizes

                 a(x)   1k  | ct1x1 + . . . . +  ctnxn  -  dt  |                    (2)

known as a minimum absolute deviation solution, could be considered as the best solution for this problem.

                 ut =   ct1x1 + . . . . +  ctnxn  -  dt   =  ut+ - ut-                 (3)          .

                                                                   ut+ut-  ≥  0   

 ut   is the deviation in the objective function   zt(x)    from its desired value of   at the point x, any be positive, negative or zero, and it can always be expressed as the difference of two non-negative variables which we denote ut+(positive part),  ut- (negative part) .

and

                         a(x)  =   1k  | ut |                                                                         (4)

is the sum of absolute deviations.         

We are defining         

                   

                         ut+      =    0                    if   ut  ≤  0

                    ut+      =    ut                      if   ut  >  0 

 

                    ut-       =   0                     if   ut   ≥  0

                    ut-       =   -ut                   if   ut   <  0                           (5)

        

 

we guarantee that

                    ut+ ut-    =  0                                                                (6)

 

Now, we have the LP as follows

           Minimize     1k  ( ut+ + ut- )                             .

           subject to     ct1x1 + . . . . +  ctnxn  -  ut+ + ut-  =   dt  ,      t = 1 to k

                                                                   ut+ ut-  ≥  0           for all t

            and the constraints in ( P )                                                                           (7)

 

 

Suppose we are given positive weights   wt   corresponding to   zt(x)   for  t = 1 to k. The higher the weight of an objective function, the higher its priority, i.e. , the more important it is that its value be closure to its desired value.

 

In this case the best solution to the problem that minimizes the weighted cost function

                                               1k wt( ut+ + ut- )           subject to constraint (7).

 

                            

Goal Programming