Computer Architecture

SIMD Architecture: Vector Processing

Debadatta Mishra, CSE, IITK

Classification of Computing Frameworks

Single Instruction Single Data (SISD) Covered

Single Core with ILP techniques such as superscalar and speculative execution

Single Instruction Multiple Data (SIMD) Agenda for
Multiple SIMD processor execute the same instruction on multiple data to (remaining
data level parallelism lectures

Multiple Instruction Single Data (MISD)
Not very common as concurrent operation on the same data ensuring correctness
is difficult to achieve

Multiple Instruction Multiple Data (MIMD)

Independent processing by different processors with correctness guarantees

Multi-core and multi-threaded processors (5423

Vector processing

ldv v1,rl
mulvs v2,vl, £0

//load X to vector reg vl
//v2 = a*X

- Assuming single lane,
one element in V2 is
ready in each cycle

VA1 V2
/ Vi[5]
i - Time taken to ex
VIS FO e taken to ;.ecute
one convoy = chime

Load Unit AELAR - Execution zime of a

V1[3]" FO ,
V1[6] ViQ Fo V2[0] chime for a vector of
Memory VI[1]* FO size 64 = 64 cycles
Pipelined multiplier (approx.)

. | Adder \

]

. / Adder \

]

. Vector RF:
.| Elements: 0, 2,4 ...

Vector RF:
Elements: 1,3,5 ...

Pipelined
Multiplier

Pipelined
Multiplier

Vector Load/Store Unit

Each lane consists of one execution
pipeline and a portion of vector RF
Example: Lane 0 consists of the
first pipeline of all FUs and first
element of all vector registers
Benefits?

Is there any interdependence?

How about #of read/write ports?

. | Adder \

]

. / Adder \

]

. Vector RF:
.| Elements: 0, 2,4 ...

Vector RF:
Elements: 1,3,5 ...

Pipelined
Multiplier

Pipelined
Multiplier

Vector Load/Store Unit

Each lane consists of one execution
pipeline and a portion of vector RF
Example: Lane 0 consists of the
first pipeline of all FUs and first
element of all vector registers
Benefits? Chime execution time
reduced by a factor of #of lanes

Is there any interdependence?

How about #of read/write ports?

. | Adder \

]

. / Adder \

]

. Vector RF:
.| Elements: 0, 2,4 ...

Vector RF:
Elements: 1,3,5 ...

Pipelined
Multiplier

Pipelined
Multiplier

Vector Load/Store Unit

Each lane consists of one execution
pipeline and a portion of vector RF
Example: Lane 0 consists of the first
pipeline of all FUs and first element
of all vector registers

Benefits? Chime execution time
reduced by a factor of #of lanes

Is there any interdependence? Lanes
can execute independently

How about #of read/write ports?

: - Each lane consists of one execution
: Adder = Ager : pipeline and a portion of vector RF

I S - Example: Lane 0 consists of the first
: Vector RF: - Vector RF: ; pipeline of all FUs and first element
.| Elements:0,2,4... |- .| Elements:1,35... | .
: L of all vector registers

- Benefits? Chime execution time

: : reduced by a factor of #of lanes
Pipslined L Soclinee : - Is there any interdependence? Lanes
M ;o\ Mltipller f can execute independently

: - ' - How about #of read/write ports? No

Tt L S increase due to inter-lane interaction

Vector Load/Store Unit

Handling arbitrary length vectors

- Vector length can be more than maximum # of data elements in a VR (a.k.a. MVL)
- Vector length may not be a multiple of MVL
Strip mining
Split the vector into multiple of MVL
Residual elements handled separately
Example: Multiply two vectors of length 1000
15 iterations with full sized vectors (VLEN = 64)
One iteration with VLEN = 40

Conditional vector operations using mask registers

Conditional Execution

- The loop can not be vectorized

for (i=0; i<64; i=i+1) - Compiler can use a vector mask
1f i 1= 0 . . .
’ (ﬁﬂ = y[)i] / x[i] register (VMR) along with special

instructions for conditional execution

Conditional vector operations using mask registers

Conditional Execution

for (i=0; i<64; i=i+1)
if (x[i] '= 0)
y[i] = y[i]l / xI[i]

// rl = &x[0], r2 = &y[0], £0O = 0 (FP)

1dv vl1l, rl //load x into vl

1dv v2, r2 //load y into v2

sneVS v1l, £f0 //set vmr[i] = 1 if v1[i] '= 0
divvwVv v2,v2,vl // v2=v2/vl under vmr

sV v2, r2 // store v to y

The loop can not be vectorized
Compiler can use a vector mask
register (VMR) along with special
instructions for conditional execution
In vector processors VMR is part of
architectural state — compiler should
set it appropriately

Masked vector operation

Conditional Execution VA1 V2

for (i=0; i<64; i=i+1)
if (x[i] '= 0)
y[i] = y[i]l / xI[i]

// rl = &x[0], r2 = &y[0], £0 = 0 (FP) Pipelined
1dv v1, rl //load x into vl FU
1dv v2, r2 //load y into v2

sneVS v1l, £f0 //set vmr[i] = 1 if v1[i] '= 0

divvwVv v2,v2,vl // v2=v2/vl under vmr
sV v2, r2 // store v to y

- Impact on performance?

VMR

Masked vector operation

Conditional Execution VA

V2

for (i=0; i<64; i=i+1)
if (x[i] '= 0)
y[i] = y[i]l / xI[i] MIO]

M[1]

VA[5] V2[5]

// rl = &x[0], r2 = &y[0], £0 = 0 (FP)

1dv v1, rl //load x into vl

1dv v2, r2 //load y into v2

sneVS v1l, £f0 //set vmr[i] = 1 if v1[i] '= 0
divvwVv v2,v2,vl // v2=v2/vl under vmr

sV v2, r2 // store v to y

FU
(4-stages)

IO U N N e T N N

V3[0]
- Only valid ops enter pipeline

VMR

Sparse data processing

Pack using indirection

- Kand M contain index values for
for (i=0; i<64; i=i+1) non-zero elements of Aand B
A[K[i]] = A[K[i]] + B[M[i]] respectively
- How vector operations can be
performed?

Sparse data processing

Pack using indirection

for (i=0;

i<64; i=i+1)
A[K[i]] = A[K[i]] + B[M[i]]

K'and M contain index values for
non-zero elements of Aand B
respectively
How vector operations can be
performed?
- Gather: Uses an index vector to
load non-zero elements
- Perform vector computation
- Scatter: Use index vector to store
non-zero elements

Sparse data processing

Pack using indirection

for (i=0; i<64; i=i+1)
A[K[i]] = A[K[i]] + B[M[i]]

//Assuming same sparseness

1dv Vk, Rk //load index vector to Vk register
1dvI Vva, (Ra+Vk) // Gather A and pack into Va
1dV Vm, Rm //load index vector to Vm register
1dvI Vb, (Rb+Vm) // Gather B and pack into Vb
addvv Va,Va,Vb // v2=v2 + vl under vmr

sV (Ra+Vk), Va // store v to y

K'and M contain index values for
non-zero elements of Aand B
respectively

Performance of gather-scatter vs.
non-indexed implementation?

Sparse data processing

Pack using indirection

for (i=0; i<64; i=i+1)
A[K[i]] = A[K[i]] + B[M[i]]

//Assuming same sparseness

1dv Vk, Rk //load index vector to Vk register
1dvI Vva, (Ra+Vk) // Gather A and pack into Va
1dV Vm, Rm //load index vector to Vm register
1dvI Vb, (Rb+Vm) // Gather B and pack into Vb
addvv Va,Va,Vb // v2=v2 + vl under vmr

sV (Ra+Vk), Va // store v to y

K'and M contain index values for
non-zero elements of Aand B
respectively
Performance of gather-scatter vs.
non-indexed implementation?
- Gather-scatter avoids unnecessary
operations
- Specialized memory access
mechanisms required to serve
Indexed access efficiently

SIMD extensions for Multimedia

Motivation: Multimedia systems require fewer bits (8 or 16 bits) to represent color,

transparency, audio samples etc.

Partitioning support in functional units can allow simultaneous operations
Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands

Few additional registers may be provided to hold the vectors

Example with 256-bit SIMD extension

// Y =a * x + Y
// rl = &x[0], r2

1dD £f0, (a)

mov f1,f0

mov f2,f0

mov f£3, f0

daddiu r3,rl, #512
loop: 1dDE f4,0(rl
mulDE f4,f4,f0
1dDE £8,0(r2)
addDE f8,f8, f4

sDE £8,0(r2)
daddiu rl,rl, #32
daddiu r2,r2, #32
sub r4,r3,rl

benz r4, loop

)

&y[01],
//load scalar a

// copy to allow SIMD op

//r3=&X[0] + 512

//E[4-7] = x[1..1+3]
//f[4-7] = a*x[1..1+3]
//£18-111 = y[i..i+3]
//E[8-11] = a*x[]+y[]
//y[i..i+3] = £[8-11]
// rl = &x[1+4]

// r2 = &y[i+4]

// elements remaining

Semantic

‘mulDE f4, f4,f0” performs vector
multiplication between registers
f[0-3] and f[4-7] and store the
results in f[4-/]

of iterations reduced by a
factor of 4

SIMD extensions for Multimedia

Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,
transparency etc.
Partitioning support in functional units can allow simultaneous operations
Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
Few additional registers may be provided to hold the vectors
Examples: Intel MMX —SSE* —AVX to support specialized library development
Limitations
Limited support for addressing modes such as gather-scatter
Typically does not provide mask registers for conditional execution

SIMD extensions for Multimedia

Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,
transparency etc.
Partitioning support in functional units can allow simultaneous operations
Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
Few additional registers may be provided to hold the vectors
Examples: Intel MMX —SSE* —AVX to support specialized library development
Limitations
Limited support for addressing modes such as gather-scatter
Typically does not provide mask registers for conditional execution
Advantages?

SIMD extensions for Multimedia

Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,
transparency etc.
Partitioning support in functional units can allow simultaneous operations
Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
Few additional registers may be provided to hold the vectors
Examples: Intel MMX —SSE* —AVX to support specialized library development
Limitations
Limited support for addressing modes such as gather-scatter
Typically does not provide mask registers for conditional execution
Advantages? Resource reuse, fast context switches, little additional cost for protection
checks, suitable for small vector operations

