
SIMD Architecture: Vector Processing
Debadatta Mishra, CSE, IITK

Computer Architecture

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
- Multiple SIMD processor execute the same instruction on multiple data to exploit

data level parallelism

- Multiple Instruction Single Data (MISD)
- Not very common as concurrent operation on the same data ensuring correctness

is difficult to achieve

- Multiple Instruction Multiple Data (MIMD)
- Independent processing by different processors with correctness guarantees
- Multi-core and multi-threaded processors

Agenda for
remaining
lectures

CS423

Covered

Vector processing

ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X

 V1

 Load Unit

 Memory

Pipelined multiplier

 V1[5] * F0

 V1[4] * F0

 V1[3] * F0

 V2

 V1[5]

 V1[6]
 V1[2] * F0

 V1[1] * F0

 V2[0]

- Assuming single lane,
one element in V2 is
ready in each cycle

- Time taken to execute
one convoy = chime

- Execution time of a
chime for a vector of
size 64 = 64 cycles
(approx.)

Multi-lane vector processing

Vector RF:
Elements: 0, 2, 4 …

 Vector Load/Store Unit

Pipelined
Multiplier

 Adder

 Lane 0

Vector RF:
Elements: 1,3,5 …

Pipelined
Multiplier

 Adder

 Lane 1

- Each lane consists of one execution
pipeline and a portion of vector RF

- Example: Lane 0 consists of the
first pipeline of all FUs and first
element of all vector registers

- Benefits?
- Is there any interdependence?
- How about #of read/write ports?

Multi-lane vector processing

Vector RF:
Elements: 0, 2, 4 …

 Vector Load/Store Unit

Pipelined
Multiplier

 Adder

 Lane 0

Vector RF:
Elements: 1,3,5 …

Pipelined
Multiplier

 Adder

 Lane 1

- Each lane consists of one execution
pipeline and a portion of vector RF

- Example: Lane 0 consists of the
first pipeline of all FUs and first
element of all vector registers

- Benefits? Chime execution time
reduced by a factor of #of lanes

- Is there any interdependence?
- How about #of read/write ports?

Multi-lane vector processing

Vector RF:
Elements: 0, 2, 4 …

 Vector Load/Store Unit

Pipelined
Multiplier

 Adder

 Lane 0

Vector RF:
Elements: 1,3,5 …

Pipelined
Multiplier

 Adder

 Lane 1

- Each lane consists of one execution
pipeline and a portion of vector RF

- Example: Lane 0 consists of the first
pipeline of all FUs and first element
of all vector registers

- Benefits? Chime execution time
reduced by a factor of #of lanes

- Is there any interdependence? Lanes
can execute independently

- How about #of read/write ports?

Multi-lane vector processing

Vector RF:
Elements: 0, 2, 4 …

 Vector Load/Store Unit

Pipelined
Multiplier

 Adder

 Lane 0

Vector RF:
Elements: 1,3,5 …

Pipelined
Multiplier

 Adder

 Lane 1

- Each lane consists of one execution
pipeline and a portion of vector RF

- Example: Lane 0 consists of the first
pipeline of all FUs and first element
of all vector registers

- Benefits? Chime execution time
reduced by a factor of #of lanes

- Is there any interdependence? Lanes
can execute independently

- How about #of read/write ports? No
increase due to inter-lane interaction

Handling arbitrary length vectors

- Vector length can be more than maximum # of data elements in a VR (a.k.a. MVL)
- Vector length may not be a multiple of MVL
- Strip mining

- Split the vector into multiple of MVL
- Residual elements handled separately

- Example: Multiply two vectors of length 1000
- 15 iterations with full sized vectors (VLEN = 64)
- One iteration with VLEN = 40

Conditional vector operations using mask registers

for(i=0; i<64; i=i+1)
 if(x[i] != 0)
 y[i] = y[i] / x[i]

Conditional Execution - The loop can not be vectorized
- Compiler can use a vector mask

register (VMR) along with special
instructions for conditional execution

Conditional vector operations using mask registers

- The loop can not be vectorized
- Compiler can use a vector mask

register (VMR) along with special
instructions for conditional execution

- In vector processors VMR is part of
architectural state — compiler should
set it appropriately

for(i=0; i<64; i=i+1)
 if(x[i] != 0)
 y[i] = y[i] / x[i]

Conditional Execution

// r1 = &x[0], r2 = &y[0], f0 = 0 (FP)
ldV v1, r1 //load x into v1
ldV v2, r2 //load y into v2
sneVS v1, f0 //set vmr[i] = 1 if v1[i] != 0
divVV v2,v2,v1 // v2=v2/v1 under vmr
sV v2, r2 // store v to y

Masked vector operation

for(i=0; i<64; i=i+1)
 if(x[i] != 0)
 y[i] = y[i] / x[i]

Conditional Execution

// r1 = &x[0], r2 = &y[0], f0 = 0 (FP)
ldV v1, r1 //load x into v1
ldV v2, r2 //load y into v2
sneVS v1, f0 //set vmr[i] = 1 if v1[i] != 0
divVV v2,v2,v1 // v2=v2/v1 under vmr
sV v2, r2 // store v to y

 V1

Pipelined
 FU

…

 V2

VMR

- Impact on performance?

Masked vector operation

for(i=0; i<64; i=i+1)
 if(x[i] != 0)
 y[i] = y[i] / x[i]

Conditional Execution

// r1 = &x[0], r2 = &y[0], f0 = 0 (FP)
ldV v1, r1 //load x into v1
ldV v2, r2 //load y into v2
sneVS v1, f0 //set vmr[i] = 1 if v1[i] != 0
divVV v2,v2,v1 // v2=v2/v1 under vmr
sV v2, r2 // store v to y

 V1

 FU
(4-stages)

1

1

0

1

1

…

 V2

VMR

1

M[0]
M[1]

V3[0]

V2[5]V1[5]

- Only valid ops enter pipeline

Sparse data processing

- K and M contain index values for
non-zero elements of A and B
respectively

- How vector operations can be
performed?

for(i=0; i<64; i=i+1)
 A[K[i]] = A[K[i]] + B[M[i]]

Pack using indirection

Sparse data processing
- K and M contain index values for

non-zero elements of A and B
respectively

- How vector operations can be
performed?

- Gather: Uses an index vector to
load non-zero elements

- Perform vector computation
- Scatter: Use index vector to store

non-zero elements

for(i=0; i<64; i=i+1)
 A[K[i]] = A[K[i]] + B[M[i]]

Pack using indirection

Sparse data processing
- K and M contain index values for

non-zero elements of A and B
respectively

- Performance of gather-scatter vs.
non-indexed implementation?

for(i=0; i<64; i=i+1)
 A[K[i]] = A[K[i]] + B[M[i]]

Pack using indirection

//Assuming same sparseness

ldV Vk, Rk //load index vector to Vk register
ldVI Va, (Ra+Vk) // Gather A and pack into Va
ldV Vm, Rm //load index vector to Vm register
ldVI Vb, (Rb+Vm) // Gather B and pack into Vb
addVV Va,Va,Vb // v2=v2 + v1 under vmr
sV (Ra+Vk), Va // store v to y

Sparse data processing
- K and M contain index values for

non-zero elements of A and B
respectively

- Performance of gather-scatter vs.
non-indexed implementation?

- Gather-scatter avoids unnecessary
operations

- Specialized memory access
mechanisms required to serve
indexed access efficiently

for(i=0; i<64; i=i+1)
 A[K[i]] = A[K[i]] + B[M[i]]

Pack using indirection

//Assuming same sparseness

ldV Vk, Rk //load index vector to Vk register
ldVI Va, (Ra+Vk) // Gather A and pack into Va
ldV Vm, Rm //load index vector to Vm register
ldVI Vb, (Rb+Vm) // Gather B and pack into Vb
addVV Va,Va,Vb // v2=v2 + v1 under vmr
sV (Ra+Vk), Va // store v to y

SIMD extensions for Multimedia
- Motivation: Multimedia systems require fewer bits (8 or 16 bits) to represent color,

transparency, audio samples etc.
- Partitioning support in functional units can allow simultaneous operations

- Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
- Few additional registers may be provided to hold the vectors

Example with 256-bit SIMD extension

// Y = a * x + Y
// r1 = &x[0], r2 = &y[0],

ldD f0,(a) //load scalar a
mov f1,f0
mov f2,f0 // copy to allow SIMD op
mov f3,f0
daddiu r3,r1, #512 //r3=&X[0] + 512
loop: ldDE f4,0(r1) //f[4-7] = x[i..i+3]
mulDE f4,f4,f0 //f[4-7] = a*x[i..i+3]
ldDE f8,0(r2) //f[8-11] = y[i..i+3]
addDE f8,f8,f4 //f[8-11] = a*x[]+y[]
sDE f8,0(r2) //y[i..i+3] = f[8-11]
daddiu r1,r1,#32 // r1 = &x[i+4]
daddiu r2,r2,#32 // r2 = &y[i+4]
sub r4,r3,r1 // elements remaining
benz r4, loop

- Semantic

“mulDE f4, f4,f0” performs vector
multiplication between registers
f[0-3] and f[4-7] and store the
results in f[4-7]

- # of iterations reduced by a
factor of 4

SIMD extensions for Multimedia
- Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,

transparency etc.
- Partitioning support in functional units can allow simultaneous operations

- Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
- Few additional registers may be provided to hold the vectors
- Examples: Intel MMX →SSE* →AVX to support specialized library development
- Limitations

- Limited support for addressing modes such as gather-scatter
- Typically does not provide mask registers for conditional execution

SIMD extensions for Multimedia
- Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,

transparency etc.
- Partitioning support in functional units can allow simultaneous operations

- Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
- Few additional registers may be provided to hold the vectors
- Examples: Intel MMX →SSE* →AVX to support specialized library development
- Limitations

- Limited support for addressing modes such as gather-scatter
- Typically does not provide mask registers for conditional execution

- Advantages?

SIMD extensions for Multimedia
- Motivation: Graphics systems require fewer bits (8 or 16 bits) to represent color,

transparency etc.
- Partitioning support in functional units can allow simultaneous operations

- Example: A partitioned 256 bit adder can add vectors of 32 8-bit operands
- Few additional registers may be provided to hold the vectors
- Examples: Intel MMX →SSE* →AVX to support specialized library development
- Limitations

- Limited support for addressing modes such as gather-scatter
- Typically does not provide mask registers for conditional execution

- Advantages? Resource reuse, fast context switches, little additional cost for protection
checks, suitable for small vector operations

