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User API for memory management 

OS

PCB 

Code

Data

Stack

Heap

Free
Memory state

USER

System calls 
(brk, mmap, ...)

Library API
malloc( )
calloc( ) 
free( )
….. 

- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)



- start and end never 
overlaps between two 
vm areas

- can merge/extend vmas 
if permissions match

- linux maintains a maple 
tree to search vmas (see 
mm/filemap.c)  

task mm

struct task_struct struct mm_struct

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 
…

struct vm_area_struct
(include/linux/mm_types.h)

Virtual memory management

The OS implements VM system calls like mmap( ), mprotect( ) by manipulating the VMAs 



Address translation: Paging
- The idea of paging

- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- OS creates a mapping between page to page frame , H/W uses the 

mapping to translate VA to PA
- With increased address space size, single level page table entry is not 

feasible, because
- Increasing page size increases internal fragmentation
- Small pages may not be suitable to hold all mapping entries



4-level page tables: 48-bit VA (Intel x86_64) 

CR3

  9 bits                               9 bits                             9 bits                      9 bits                             12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               Physical   
frame (4K)

- Virtual address size = 248, Page size = 4096 bytes
- Four-levels of page table, entry size = 64 bits 



Paging example (structure of an example PTE)

PFN X D W PA S

- PFN occupies a significant portion of PTE entry (8 bits in this example)
P Present bit,  1 ⇒ entry is  valid

W Write  bit,  1 ⇒ Write allowed

S Privilege bit,  0 ⇒  only kernel mode access is allowed

A Accessed bit,  1 ⇒  Address accessed (set by H/W during walk)

D Dirty bit,  1 ⇒  Address written (set by H/W during walk)

X Execute bit,  1 ⇒  Instruction fetch allowed for this page

8 bits

Reserved/unused bits



4-level page tables: example translation

000000001000000000001000000000000000110000000000

0x2007000

  9 bits                               9 bits                             9 bits                      9 bits                             12 bits

0x2008027            
0x200B027

- Virtual address = 0x180001008
- Hardware translation by repeated access of page table stored in 

physical memory
- Page table entry: 12 bits LSB is used for access flags

0x2007000

CR3

0x2008000

0th

6th

0x200B000

0th 0x200C027            0x640E007

0x200C000

1st

0x640E000

Data PFN

User data 
0x640E008



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?

- Instruction execution:   Loop = 10 * 6,  Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access:  Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? 



Paging with TLB: translation efficiency

- TLB is a hardware cache which stores Page to PFN mapping
- After first miss for instruction fetch address, all others result in a TLB hit
- Similarly, considering the stack virtual address range as 0x7FFF000 - 

0x8000000, one entry in TLB avoids page table walk after first miss

Page PTE

0x20 0x750

0x7FFF 0x890

TLB
Translate(V){
                PageAddress P = V >> 12;
                TLBEntry entry = lookup(P);
                if (entry.valid) return entry.pte;
                entry = PageTableWalk(V);
                MakeEntry(entry); 
                return entry.pte;
} 
    



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?

- Instruction execution:   Loop = 10 * 6,  Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access:  Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? 
- One code page (0x20) and one stack page (0x7FFF). Caching these 

translations, will save a lot of memory accesses.



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Why page fault is necessary?
- How OS handles the page fault?



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Process B may be using the same addresses used by 
A. Result: Wrong translation

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Correctness ensured. Performance is an issue (with 
frequent context switching)

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Address space identified (ASID) along with each TLB 
entry to identify the process

Page PTE
0x100 ox200007
0x101
0x100 0x301007
0x101

TLB

Process (A)          Process (B)          

ox205007

ASID
A
A
B
B 0x302007



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- How OS handles the page fault?



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy 

allocation and swapping
- How OS handles the page fault?



Page fault handling in X86: Hardware 

If(  !pte.valid || 
     (access == write && !pte.write) ||
     (cpl != 0 && pte.priv == 0)){
             CR2 = Address;
             errorCode = pte.valid 
                                      | access << 1
                                      | cpl << 2;
              Raise pageFault;
} // Simplified



Page fault handling in X86: Hardware 

If(  !pte.valid || 
     (access == write && !pte.write) ||
     (cpl != 0 && pte.priv == 0)){
             CR2 = Address;
             errorCode = pte.valid 
                                      | access << 1
                                      | cpl << 2;
              Raise pageFault;
} // Simplified

I W PR U

P Present bit,  1 ⇒ fault is due to protection

W Write  bit,  1 ⇒ Access is write

U Privilege bit,  1 ⇒  Access is from user mode 

R Reserved bit,  1 ⇒  Reserved bit violation

I Fetch bit,  1 ⇒  Access is Instruction Fetch

Other and unused

Error code 

- Error code is pushed into the kernel stack by the hardware



Page fault handling in X86: OS fault handler 

HandlePageFault( u64 address, u64 error_code)
{
      If ( AddressExists(current → mm_state, address) && 
            AccessPermitted(current → mm_state, error_code) {
                    PFN = allocate_pfn( );
                    install_pte(address, PFN); 
                   return;
           } 
     RaiseSignal(SIGSEGV);
}



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy 

allocation and swapping
- How OS handles the page fault?
- The hardware invokes the page fault handler by placing the error code 

and virtual address. The OS handles the page fault either fixing it or 
raising a SEGFAULT. 



Swapping (swap-out)

OS

Number of free PFNs are 
very few in the system. I can 
not break my promise made 
to the applications. Let me 
swap-out some memory. But 
which one to swap-out?

DRAM

Swap (Hard disk)
AllocatePFN( )



Swapping (swap-out)

OS

My page replacement policy 
will help me deciding the 
victims (V). Can I just 
swap-out? What if the 
swapped-out pages are 
accessed? I should be 
prepared for that too!

DRAM

Swap (Hard disk)

V

Page Replacement Policy

AllocatePFN( )



Swapping (swap-out)

OS

Update the present-bit to 0 in 
the PTE such that any access to 
the page through the virtual 
address will result in a page 
fault. Also maintain the swap 
address in the PTE. 

DRAM

Swap (Hard disk)

V

AllocatePFN( )

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V



Swapping (swap-out)

OS

Content of the PFN is now in 
the swap device. In future, any 
translation using the PTE will 
result in a page fault. The page 
fault handler would copy it 
back from the swap device.

DRAM

Swap (Hard disk)
AllocatePFN( )

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V



Page fault with swap-in

HandlePageFault( u64 address, u64 error_code)
{
      If ( AddressExists(current → mm_state, address) && 
            AccessPermitted(current → mm_state, error_code) {
                    PFN = allocate_pfn( ); 
                    If ( is_swapped_pte(address) )        // Check if the PTE is swapped out 
                      swapin(getPTE(address), PFN);   // Copy the swap block  to PFN   
                    install_pte(address, PFN);                // and update the PTE
                   return;
           } 
     RaiseSignal(SIGSEGV);
}



Efficient translation: Huge page support

CR3

  9 bits                               9 bits                             9 bits                                                 21 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

 pmd_t(H)               

pmd_offset page_offset

Physical   
frame (2M)

- Virtual address size = 248, Page size = 2M = PFN size
- Advantages? 
- Disadvantages?



Efficient translation: Huge page support

CR3

  9 bits                               9 bits                             9 bits                                                 21 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

 pmd_t(H)               

pmd_offset page_offset

Physical   
frame (2M)

- Virtual address size = 248, Page size = 2M 
- Advantages? Efficient (walk and TLB coverage) 
- Disadvantages? Inefficient management



Mixed page size support

Physical   
frame (2M)

 pmd_t(H)               

 pmd_t               

  pte_t               Physical   
frame (4K)

walk_pmd(pmd, vaddr)  {
    if(pmd.H)
        paddr = pmd.nextL( ) + (vaddr & pmask); 
  else
         pte = pmd.nextL( ) + pte_offset(vaddr)             
} // Simplified H/W logic



Mixed page size support

Physical   
frame (2M)

 pmd_t(H)               

 pmd_t               

  pte_t               Physical   
frame (4K)

- The OS may use the hardware 
support to implement any policy

- Transparent hugepage (THP) in Linux 
trie to create huge page mapping in 
w/o explicit user space assistance

- Policy knobs through sysfs 

walk_pmd(pmd, vaddr)  {
    if(pmd.H)
        paddr = pmd.nextL( ) + (vaddr & pmask); 
  else
         pte = pmd.nextL( ) + pte_offset(vaddr)             
} // Simplified H/W logic



Kernel Virtual Memory

- Why not treat kernel as an isolated MM context? 



Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!)  why?
- Even worse, user data of many processes accessed 
- In X86, a small part of the kernel can not be isolated as HW does not 

perform MM context switch
- Requirement: efficient memory isolation between user and kernel



Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!)  why?
- Even worse, user data of many processes can be accessed 
- In X86, a small part of the kernel can not be isolated as HW does not 

perform MM context switch  
- Requirement: efficient memory isolation between user and kernel

- Let kernel use the same MM context of the user process
- No context switch, no problems of accessing user data



Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!)  why?
- Even worse, user data of many processes can be accessed 
- In X86, a small part of the kernel can not be isolated as HW does not 

perform MM context switch  
- Requirement: efficient memory isolation between user and kernel

- Let kernel use the same MM context of the user process
- No context switch, no problems of accessing user data

- How kernel VM change propagated across processes?  Isolation issues? 



- Kernel virtual address mapping 
should be present in both 
process page tables.

- Ex: If kernel allocates memory 
while serving syscall from 
process-1, process-2 in kernel 
mode should see it! 

- Solution should consider that,  
“processes and memory are 
dynamically created and 
destroyed”

Process 1

Page table

Kernel mode
(Process 1 & 2)

Page table

Process 2

User mode 
access

User mode 
access

Physical
Memory

Kernel mode 
access

Issue of Kernel VM propagation



- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
- Mapping changes → update mapping in every process?

- Does not look good!

Linux strives on family values!



- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
- Mapping changes → update mapping in every process?

- Does not look good!

Solution: Every process owns its own pgd entries but inherits the kernel pgd 
entries from the parent :-)

Linux strives on family values!



Process - 0 

mm->pgd           

CR3 

pgd_t  (E1)           
   pud_t               

E1

PG1

- One (or more) entries in PGD-level 
(level-4) reserved for kernel 
mapping

- How many? 
- Depends on VA-range covered by 

one entry and the kernel VA size

Solution overview



Process - 0 

mm->pgd           

CR3 

pgd_t  (E1)           
   pud_t               

E1

fork( ) Process - 1 

mm->pgd           

CR3 

pgd_t (E1)           
   pud_t               

Ek

PG1
copy 

pgd_t  EK           

- All updates to E1 are 
visible across all the 
processes

- So we are at peace! Not 
really.

PG2

Solution overview



- User virtual addresses use the LSB 47 bits
- Kernel virtual address does not start from 0x8000000000, but from 

0xffff800000000000
- Why? Because X86 hardware enforces if 47th bit is one, 48-63 must be set 

to one

Virtual memory layout (x86_64)

User VA [ 0x0 - 0x00007fffffffffff ] Kernel VA [ 0xffff800000000000- 0xffffffffffffffff ]

247 bytes 247 bytes



Process address space (user + kernel)

- Virtual address space is split into two 
parts, user VA and kernel VA

- Kernel mappings are isolated from user 
through S/U bit of page table entry

- Advantages: isolation + efficiency
- What is the need for direct map?

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
| Direct map 

(physmap)



Process address space (user + kernel)

- Virtual address space is split into two 
parts, user VA and kernel VA

- Kernel mappings are isolated from user 
through S/U bit of page table entry

- Advantages: isolation + efficiency
- What is the need for direct map? Helps in 

mapping physical address to an already 
mapped kernel vaddr

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
| Direct map 

(physmap)



Issue with shared address space

- This program will result in an exception → Segmentation fault 
- Everything seems to be under control. What is the problem then?

      char array[256 * 4096];          //__alligned(4k);

      char secret = *(char *) 0xffff888000000000;

      array[secret  << 12] = 0;



- By the time the instruction in line#3 is committed (and a fault is raised), 
instructions in line#4 and #5 are completed out-of-order 

 

1. mov $0xFFFF888000000000, %rcx;  
2. mov $array, %rbx;
3. movb (%rcx), %al;     
4. shl $oxC, %rax;
5. mov (%rax + %rbx), %rax ;

      

Information leakage through out-of-order execution

Executed 
out-of-order

Exception handler
1. cmp CR2, $userend;  
2. Jg raise_segv;
3. ………….
4. ……..
5. raise_segv: 
6. ……….



Side-effect: access footprint

1. char array[256 * 4096];          //__alligned(4k);
2. char secret = *(char *) 0xffff888000000000;
3. array[secret  << 12] = 0;

0 1 2 2563 k……. …….

Array (before the program execution) :   block 0 == {0 - 4095} etc. 

0 1 2 2563 k……. …….

Array (after out-of-order execution of #3)  {assume secret = k} 

Accessed



1. unsigned time[256]; 
2. char array[256 * 4096];         
3. flush_array(array);
4. char secret = *(char *) 0xffff888000000000;
5. array[secret  << 12] = 0;
6. for(i=0; i<256; ++i)
7.                access_and_time(array, time, i);
8. secret = find_index_with_min_time( time);

0 1 2 2563 k……. …….

0 1 2 2563 k……. …….

OOO vulnerability + Flush-Reload 

In cache

- Result: indirectly read the value of secret
- Meltdown looks easy…. some subtle points still remain 
- What is the fix?



Linux paging (before PTI)

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
|

CR3

User Mode 

Kernel Mode

- CR3 remains unchanged
- However, all addresses remain mapped (even in user 

mode) → Meltdown 



Linux paging (with PTI)

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

sysentry_pud

CR3

User Mode 

Kernel Mode

CR3

PGD

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
|

user

kernel

- Entries for user VA remain 
in both PTs

- Kernel mode page table is 
just like it was w/o PT



PTI overheads

- Any change in user PGD should be synced with the kernel PGD (only @pgd level) 
- On fork( ), both user PGD and kernel PGD should be copied
- Context switch overheads?



PTI overheads

- Any change in user PGD should be synced with the kernel PGD (only @pgd level) 
- On fork( ), both user PGD and kernel PGD should be copied
- User-kernel context switch overheads?

- To address this concern, a special bit is set in CR3 to avoid context switch when CR3 
register is switched

- How to handle process context switches? (CR3 is updated)
- Both user and kernel mappings should be flushed out of TLB


