
CS614: Linux Kernel Programming

File System, VFS, Ext4 File system
Debadatta Mishra, CSE, IIT Kanpur

Overview and OS Recap

File system overview

/

etc bin sbin home lib

code file.txt

USER
OS

File system
layer

Storage devices

Hard disk
drive

SSD

Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files
through a file handle a.k.a. file
descriptors

- In UNIX, the POSIX file API is
used to access files, devices,
sockets etc.

- Important file related system
calls?

System call API
(open, close, read, write …)

Files Devices Sockets

File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files
through a file handle a.k.a. file
descriptors

- In UNIX, the POSIX file API is
used to access files, devices,
sockets etc.

- Important file related system
calls: open, close, read, write,
lseek, dup, stat, select, poll …

System call API
(open, close, read, write …)

Files Devices Sockets

Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode is many-to-one

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

Linux virtual file system (VFS)

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

 FS 1

System
calls

Standard FS
objects and

interface
 FS 2

 FS N

use
implement

- Object and interface choices guided by API requirement (mostly)
- Sometimes standards (e.g., POSIX) determines the interfacing
- Implementation can be different for different file systems

A simple file system organization (on-disk)

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Limits on maximum files configured
during the file system creation

- Blocks of a single file can scatter
across the disk

File system as a middle layer

 Data blocks SB Block bitmap Inode bitmap Inode table

On-disk layout

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

System
calls

File System

Generic block I/O layer

SB and Ops

Inode and Ops

File and Ops

Dir and Ops

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

- Works fine for metadata as they are
addressed using block numbers

File layer caching (Linux page cache)

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Store and lookup memory cache
using {inode number, file offset} as
the key

- For data, index translation is not
required for file access

- Metadata may not have a file
association, should be handled
differently (using a special inode
may be!)

Linux Ext4 File system

Ext4 block groups

 Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- Ext4 organizes the logical partition into a series of block groups
- Each block group has its block bitmap and inode bitmap
- Superblock contains information regarding the location of block groups
- To reduce seek time, the FS tries to store the blocks of a given file in a single

block group

Inode Table

 ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn

Ext4 block groups

 Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- How to locate the on-disk inode given an inode number?

Inode Table

 ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn

Ext4 block groups

 Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- How to locate the on-disk inode given an inode number?
- SB maintains ‘inodes per block group’
- Calculate the group descriptor ⇒ Check the inode bitmap
- If present, read it from the table

Inode Table

 ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn

Recap: Ext2 file system indexing

K0

Ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct pointers {PTR [0] to PTR [11]}

File block address (0 -11)

I1

Single indirect {PTR [12]}

K1 K2 K11

File block address (12 -1035)

Double indirect {PTR [13]}

I2 File block address (1036 to 1049611)

Triple indirect {PTR [14]}

I3 File block address (?? to ??)

Hybrid organization: pros and cons

- Fast access for small sized files, scalable
- Require indirect block lookups for large files
- Example: for a file size of 200 KB, a single indirect index is needed
- Alternate: Why not use {block#, length}?
- Idea: Extent tree in ext4

Ext4 extents 1
struct ext4_extent_header {
 u16 eh_magic; // Fixed magic:0xF30A.
 u16 eh_entries; // Number of valid entries
 u16 eh_max; // Max entries that can follow header
 u16 eh_depth; // 0 ⇒ direct, >=1 ⇒ More levels
 u32 eh_generation; // unused for ext4
};

struct ext4_extent {
 u32 ee_block; // First logical (file) block extent covers
 u16 ee_len; // Number of blocks covered by extent
 u16 ee_start_hi; // High 16 bits of physical block
 u32 ee_start_lo; // Low 32 bits of physical block
};

- Every node of the extent
tree starts with the header

- The header can be followed
by ‘extents’ (at leaf-level) or
by indirections to the
next-level (extent_idx)

- Depth refers to the depth of
the extent tree

1. Ext4 Disk Layout: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

Direct extents

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

…..
Extent-N (12 bytes) {
 startblock
 length
}

Direct extents

- Root node of the extent is also the leaf node
- Sixty bytes of block index (in the inode) : One header and Four extents
- How to map a logical file offset to a block address?
- What is the maximum file size supported?
- What is the minimum file size supported?

Direct extents

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

…..
Extent-N (12 bytes) {
 startblock
 length
}

Direct extents

- Root node of the extent is also the leaf node
- Sixty bytes of block index (in the inode) : One header and Four extents
- How to map a logical file offset to a block address? Compare offset with

‘startblock’ (+use length) to locate the extent entry containing the mapping
- What is the maximum file size supported? 4 * 4KB * 32KB
- What is the minimum file size supported? 4 * 4KB

Ext4 indirect extents and extent tree
struct ext4_extent_header {
 u16 eh_magic; // Fixed magic:0xF30A.
 u16 eh_entries; // Number of valid entries
 u16 eh_max; // Max entries that can follow header
 u16 eh_depth; // 0 ⇒ direct, >=1 ⇒ More levels
 u32 eh_generation; // unused for ext4
};

struct ext4_extent_idx {
 u32 ei_block; //First logical (file) block the subtree covers
 u32 ei_leaf_lo; //Low 32 bits of physical block
 u16 ei_leaf_hi; // High 16 bits of physical block
 u16 ei_unused;
};

- The IDX structure specifies
a block containing the
information regarding the
next-level node of the tree

- An extent header at the
beginning of the specified
block determines how to
navigate next

- Maximum depth is five

Ext4 extent tree
HDR (12 bytes) {
 depth=1
 entries=1
}

Ext-IDX (12 bytes) {
 startblock
}

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

…..
Extent-N (12 bytes) {
 startblock
 length
}

Extent tree of
depth one

- How to map a file offset to a block?
- What is the maximum and minimum size supported by an extent tree of height

one?

Ext4 extent tree
HDR (12 bytes) {
 depth=1
 entries=1
}

Ext-IDX (12 bytes) {
 startblock
}

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

…..
Extent-N (12 bytes) {
 startblock
 length
}

Extent tree of
depth one

- How to map a file offset to a block? At any non-leaf level navigate to the next
level comparing the offset with the IDX entries

- What is the maximum and minimum size supported by an extent tree of height
one? (Homework)

Extent organization: Pros and Cons

- Fast access because of reduced meta-data, both sequential and random
- Flexible across variety of file sizes
- Sequential read of huge files can be disk friendly
- Indirectly implements variable block size
- Example: For a file size of 200 KB, a direct extent is sufficient
- Can be equivalent to indirect indexing in the worst case

Recap: File system as a middle layer

 Data blocks SB Block bitmap Inode bitmap Inode table

On-disk layout

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

System
calls

File System

Generic block I/O layer

SB and Ops

Inode and Ops

File and Ops

Dir and Ops

Details of FS mount in Linux (simplified)

Kernel

 InitFS

User

File system

VFS

Kernel/Module Load

List of FS

mount

fs = lookup(type)

- System call handler for mount looks
up the FS type

- Creates a context — an instance of the
FS for a given mount point

- The FS fills superblock and root inode
information (by performing disk block
I/O)

- A new mount point is created at the
VFS layer for future use. What kind of
use?

fc = init_fs_ctx(fs)

mnt = mount_it(fc)

 FillSuperRoot

Objects and Interfaces: Superblock
- VFS layer super block “struct super_block”, reference to Ext4 superblock

“struct ext4_sb_info”, cross reference using “sb→s_fs_info”
- Super block operations filled using “ext4_sops” structure

- Important operations: allocation and free of inodes

Objects and Interfaces: Superblock
- VFS layer super block “struct super_block”, reference to Ext4 superblock

“struct ext4_sb_info”, cross reference using “sb→s_fs_info”
- Super block operations filled using “ext4_sops” structure

- Important operations: allocation and free of inodes
- Mount: Crucial function “ext4_fill_super”, some important operations

- Allocate Ext4 superblock, load it using blkdev interfaces (buffer head)
- Initialize group descriptors
- Load root inode (ext4_iget, EXT4_ROOT_INO = 2), make VFS dentry
- Setup operations and cross references

Objects and Interfaces: Inode
- VFS layer inode “struct inode”, reference to Ext4 in-memory inode “struct

ext4_inode_info” ← “struct ext4_inode”, cross reference between VFS inode
and ext4_inode_info (VFS inode is contained in ext4_inode_info)

- Multiple in-memory caches: VFS inode cache, raw ext4 inode cache

Objects and Interfaces: Inode
- VFS layer inode “struct inode”, reference to Ext4 in-memory inode “struct

ext4_inode_info” ← “struct ext4_inode”, cross reference between VFS inode
and ext4_inode_info (VFS inode is contained in ext4_inode_info)

- Multiple in-memory caches: VFS inode cache, raw ext4 inode cache
- Operations at inode level are set using VFS inode “i_op” and “i_fop” (using

ext4_{file|dir}_operations and ext4_{file|dir}_inode_operations)
- Important file operations: read_iter, write_iter, mmap etc.
- Important DIR operations: readdir, sync etc.
- Inode operations for files are attributed to file system specific ops

(extended attributed in ext4, see man ‘xattr’)

Objects and Interfaces: dentry
- Represents an element in a file system path, Ext4 does not have an exact

on-disk equivalent. On-disk directory entry is the basis to create dentry
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed
structures

Objects and Interfaces: dentry
- Represents an element in a file system path, Ext4 does not have an exact

on-disk equivalent. On-disk directory entry is the basis to create dentry
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed
structures struct ext2_dir_entry_2 {

 __le32 inode; // Inode number, 0 ⇒ unused
 __le16 rec_len; // length of the entry
 __u8 name_len; // Name length
 __u8 file_type; // Regular file, directory, symlink..
 char name[EXT2_NAME_LEN]; // File name
};

Objects and Interfaces: dentry
- Represents an element in a file system path, Ext4 does not have an exact

on-disk equivalent. On-disk directory entry is the basis to create dentry
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed
structures

- Ext4 directory inode operations (ext4_dir_inode_operations) provide crucial
handlers for “lookup”, “create” , “mkdir” etc.

Path translation
- Important structure: “struct nameidata”

- Important members: path (mount and current walk state info), last
(next element in path), last_type (double dot, simple etc.)

- path→ dentry of the parent: current state of translation
- Every path lookup starts with a valid nameidata
- The function link_path_walk is a high-level driver for translating individual

path elements
- Performs checks for permission on the parent directory
- Advances path translation by updating the last, last_type and path

Operation: Path translation using slow path
- link_path_walk → walk_component → lookup_slow → ext4_lookup
- If found in the directory (passed as the first argument), ext4_lookup links

the dentry with the parent and fills its VFS inode
- Uses ext4_lookup_entry to get the on-disk entry
- Performs validity checks for the on-disk entry
- Fills up the inode structure (ext4_iget)
- Links up the inode with the dentry

- Path lookup continues at link_path_walk (depending on if its is the last
component or not)

Operation: Path translation using fast path
- link_path_walk → walk_component → lookup_fast → {__d_lookup_rcu or

__d_lookup}
- Both lookup methods use a hash lookup using “name” and “dentry” as the

lookup key followed by a byte-by-byte comparison
- __d_lookup_rcu (RCU walk) and __d_lookup (REF walk) differ in the way lock

is used
- RCU-based walk falls back to REF walk if RCU walk fails (because of some

issues while walking)
- Example: do_filp_open (tries RCU, REF walk and revalidation in the

order)

Path translation (Summary view)
 VFS-layer Translation
 (pathstr, nameidata)

 Ext4 Lookup
(parent, pathelement)

 Slow

 StepInto
(parent, element)

 Fast
(RCU)

 Dcache Lookup
(parent, pathelement)

Problem!

 Fast
(REF)

Objects and Interfaces: address spaces

- Address space object is used to manages memory pages belonging to file
in the page cache

- Example usage: lookup by address, dirty writeback
- In Ext4, address space operations is a pointer in inode which is set in the

function ext4_iget when preparing the VFS inode
- The address space object is used extensively during read and write

operations from both the VFS (page cache related) and Ext4 (syncing etc.)

Ext4: Read through the page cache
- Implementation of “read” in the Ext4 file system goes through many

ping-pongs between the VFS layer (including page cache) and Ext4 FS
- vfs_read→ ext4_file_read_iter → generic_file_read_iter →

filemap_read → filemap_get_pages → … → read_pages →
ext4_mpage_readpages → submit_bio (with an endio)

- The file system is involved only to read (or readahead) file blocks from the
block device (mostly on a page cache miss)

Ext4: Read through the page cache
- Implementation of “read” in the Ext4 file system goes through many

ping-pongs between the VFS layer (including page cache) and Ext4 FS
- vfs_read→ ext4_file_read_iter → generic_file_read_iter →

filemap_read → filemap_get_pages → … → read_pages →
ext4_mpage_readpages → submit_bio (with an endio)

- The file system is involved only to read (or readahead) file blocks from the
block device (mostly on a page cache miss)

- Page cache implementation is no more with a radix tree, replaced using an
extensible array (xarray), accessed through the file address space

Caching and consistency (Recap)
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees

- Example-1: If a write() system call is successful, data must be written
- Example-2: If a file creation is successful then, file is created.
- Difficult to achieve with asynchronous I/O

- Consistency w.r.t. file system invariants
- Example-1: If a block is pointed to by an inode data pointers then,

corresponding block bitmap must be set
- Example-2: Directory entry contains an inode, inode must be valid
- Possible, require special techniques

Recap: File system inconsistency

Update contents of disk
block(s)

Disk block caching
(delayed write)

System crash (software,
power failure)

Storage medium failure
(sector(s) damaged)

Possible
inconsistent
file system

- No consistency issues if user operation
translates to read-only operations on
the disk blocks

- Device level atomicity may impact file
system consistency

Example: Append to a file

Inode Block
bitmap Data block

Memory

Inode Block
bitmap Data block

Disk

- Steps: (i) seek to the end of
file, (ii) allocate a new block,
(iii) write user data

- Inode modifications: size and
block pointers

- Block bitmap update: set
used block bit for the newly
allocated block(s)

- Data update: data block
content is updated

Example: Append to a file

Inode Block
bitmap Data block

Memory

Inode Block
bitmap Data block

Disk

- Steps: (i) seek to the end of
file, (ii) allocate a new block,
(iii) write user data

- Inode modifications: size and
block pointers

- Block bitmap update: set
used block bit for the newly
allocated block(s)

- Data update: data block
content is updated

Three write operations reqd. to complete the
operation, what if some of them are incomplete?

Failure scenarios and implications

Written Yet to be written Implications

 Data block Inode, Block bitmap File system is consistent
(Lost data)

Inode Block bitmap, Data block File system is inconsistent
(correctness issues)

Block bitmap Inode, Data block File system is inconsistent
(space leakage)

- All failure scenarios may not result in consistency issues!

Failure scenarios and implications

Written Yet to be written Implications

Data block, Block bitmap Inode File system is inconsistent
(space leakage)

Inode, Data block Block bitmap File system is inconsistent
(correctness issues)

Inode, Block bitmap Data block File system is consistent
(Incorrect data)

- Careful ordering of operations may reduce the risk of inconsistency
- But, how to ensure correctness?

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

- If the FS was not cleanly unmounted, perform sanity checks at different
levels: superblock, block bitmap, inode, directory content

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

- If the FS was not cleanly unmounted, perform sanity checks at different
levels: superblock, block bitmap, inode, directory content

- Sanity checks and verifying invariants across metadata. Examples,
- Block bitmap vs. Inode block pointers
- Used inodes vs. directory content

File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

Start Inode Block Block bitmap Data Block End

File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

- (1) Write the Journal entry (journal write) (2) Update the file system
(checkpoint) (3) Release journal entry

Start Inode Block Block bitmap Data Block End

File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

- (1) Write the Journal entry (journal write) (2) Update the file system
(checkpoint) (3) Release journal entry

- Recovery: Journal entries inspected during the next mount and operations
are re-performed

Start Inode Block Block bitmap Data Block End

File system consistency with journaling

- (1) Write the Journal entry (journal write) (2) Update the file system
(checkpoint) (3) Release journal entry

- Implications of a failure during checkpoint?
- Implications of a failure during journal write?
- Are there any special requirements for journal write?
- Can the same inode block be updated after journal write?
- Overheads and optimizations?

Start Inode Block Block bitmap Data Block End

File system consistency with journaling

- Implications of a failure during checkpoint? File system state can be recovered during
recovery by replaying the journal entries

- Implications of a failure during journal write? No problem if a partial entry can be
detected at the time of recovery (may incur data loss in cached I/O)

- Are there any special requirements for journal write? Detection of partial entries
(“End” written after everything, a.k.a. journal commit) or include a checksum in “Start”
and “End”

- Can the same inode block be updated after journal write? No issues
- Overheads and optimizations? Batch transactions by holding the blocks in the buffers,

every updation applied to the buffers before a periodic journal commit

Start Inode Block Block bitmap Data Block End

Metadata journaling: performance-reliability tradeoff

- Journaling comes with a performance penalty, especially for maintaining the data
in the journal

- Metadata journaling: data block is not part of the journal entry

- Strategy: (1) Write the data block (to disk) (2) Journal write (3) Journal Commit (4)
Checkpoint (5) Release

- Why data block should be written first?
- Should the journal write wait for data write to be completed?
- Are there any issues with block reuse?

Start Inode Block Block bitmap End

Metadata journaling: performance-reliability tradeoff

- Strategy: (1) Write the data block (to disk) (2) Journal write (3) Journal Commit (4)
Checkpoint (5) Release

- Why data block should be written first?
- If the metadata blocks are not written, FS can be recovered
- If journal write fails, a write is lost (syscall semantic broken)

- Should the journal write wait for data write to be completed?
- Journal write and write to the data block can happen in parallel
- Journal commit (writing “End”) should take place afterwards

- Are there any issues with block reuse? If the nature of block usage change, special
handling is required (e.g., revocation records)

Start Inode Block Block bitmap End

Journaling in Ext4
- In Ext4, journal can be stored in two ways

- In the same FS with a special inode (inode num 8)
- On an external logical block device

 ……SuperBlock Journal BlockGR0 BlockGR1 BlockGRn

SB (Journal) TxB Blk Blk… TxE … TxB Blk Blk… TxE

Journaling in Ext4
- In Ext4, journal can be stored in two ways

- In the same FS with a special inode (inode num 8)
- On an external logical block device

 ……SuperBlock Journal BlockGR0 BlockGR1 BlockGRn

SB (Journal) TxB Blk Blk… TxE … TxB Blk Blk… TxE

- A contiguous area (default: 128MB) is demarcated as the journal
- The journal super block contains some static information (e.g., size related) and

dynamic information (e.g., related to location of valid entries)

Journaling modes in Ext4

 Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Journaling modes in Ext4

 Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD are
journaled, guaranteed
consistency, heavy
performance penalties

Journaling modes in Ext4

 Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD are
journaled, guaranteed
consistency, heavy
performance penalties

(Default) Data writes
before MD is journaled,
faster than full journaling,
suitable for cached I/O

Journaling modes in Ext4

 Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD are
journaled, guaranteed
consistency, heavy
performance penalties

(Default) Data writes
before MD is journaled,
faster than full journaling,
suitable for cached I/O

No ordering constraints
between data and MD.
Fast but lead to many
possible issues

Journaling support in Linux

- Linux provides a generic journaling API for the file systems (JBD2)
- Some of important features of JBD2

- Initializing and loading the journal
- Marking start of the transaction
- Committing a transaction
- A kernel thread for periodic commit

Journaling support in Linux

- Linux provides a generic journaling API for the file systems (JBD2)
- Some of important features of JBD2

- Initializing and loading the journal
- Marking start of the transaction
- Committing a transaction
- A kernel thread for periodic commit

- __ext4_fill_super → ext4_load_and_init_journal→ext4_load_journal
- → ext4_get_journal →jbd2_journal_init_inode (def)
- →jbd2_journal_load (def)

Ext4 and JBD2: Example

- Start a transaction: jbd2_journal_start
- Notify intent on a meta-data using jbd2_journal_get_write/create_access
- Perform the operation and notify using jbd2_journal_dirty_metadata
- Finish a transaction: jbd2_journal_stop
- Start and stop can be nested, but the #of start and stop need to be matched!
- Journal commit can be forced using jbd2_journal_flush

Ext4 and JBD2: Example

- Start a transaction: jbd2_journal_start
- Notify intent on a meta-data using jbd2_journal_get_write/create_access
- Perform the operation and notify using jbd2_journal_dirty_metadata
- Finish a transaction: jbd2_journal_stop
- Start and stop can be nested, but the #of start and stop need to be matched!
- Journal commit can be forced using jbd2_journal_flush
- Example: ext4_alloc_file_blocks

- ext4_journal_start → jbd2_journal_start
- ext4_mark_inode_dirty → ext4_reserve_inode_write →ext4_journal_get_write_access
- ext4_mark_iloc_dirty → ext4_handle_dirty_metadata → jbd2_journal_dirty_metadata
- ext4_journal_stop →jbd2_journal_stop

Quiz

Q1. What is the name of the structure type (referred to as “S” in the rest of the question) in the
task_struct representing the open files? How is the list of open FDs maintained? How are they
linked to “file objects”? (3)

Q2. As one can observe, the contents of “S” managing open files are statically sized and can not
meet the need after a particular threshold “T” is reached. What is the value of “T”? (2)

Q3. How does the Linux kernel handle the case when the threshold “T” is crossed? Explain
overall working mechanism along with the name of the functions used. (5)

