
CS330: Operating Systems

Privileged ISA (X86_64)

Recap: Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?
- CPU privilege levels: user-mode vs. kernel-mode
- Switching between modes, entry points and handlers

Agenda: High-level view of x86_64 support for privileged mode

X86: rings of protection

3
2

1
0

- 4 privilege levels: 0→ highest, 3→ lowest
- Some operations are allowed only in privilege

level 0
- Most OSes use 0 (for kernel) and 3 (for user)
- Different kinds of privilege enforcement

- Instruction is privileged
- Operand is privileged

Privileged instruction: HLT (on Linux x86_64)

- HLT: Halt the CPU core till next external interrupt
- Executed from user space results in protection fault
- Action: Linux kernel kills the application

int main()
{
 asm(“hlt;”);
}

Privileged operation: Read CR3 (Linux x86_64)

- CR3 register points to the address
space translation information

- When executed from user space results
in protection fault

- “mov” instruction is not privileged per
se, but the operand is privileged

#include<stdio.h>
int main(){
 unsigned long cr3_val;
 asm volatile("mov %%cr3, %0;"
 : "=r" (cr3_val)
 ::);
 printf("%lx\n", cr3_val);
}

Interrupt Descriptor Table (IDT): gateway to handlers

.

.

.

- Interrupt descriptor table provides a way
to define handlers for different events like
external interrupts, faults and system calls
by defining the descriptors

- Descriptors 0-31 are for predefined events
e.g., 0 → Div-by-zero exception etc.

- Events 32-255 are user defined, can be
used for h/w and s/w interrupt handling

IDT

 IDTR

CPU

DESC - 0

DESC - 1

DESC - 2

DESC - 255

Defining the descriptors (OS boot)

.

.

.

- Each descriptor contains information about
handling the event

- Privilege switch information
- Handler address

- The OS defines the descriptors and loads
the IDTR register with the address of the
descriptor table (using LIDT instruction)

IDT

 IDTR

CPU

OS

DESC - 0

DESC - 1

DESC - 2

DESC - 255

System call INT instruction (gemOS)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in
the IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler
function, How?

System call INT instruction (gemOS)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in
the IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler
function, How?

- Every system call is associated with a number (defined by OS)
- User process sends information like system call number, arguments

through CPU registers which is used to invoke the actual handler

System call in gemOS

- gemOS defines system call handler for descriptor 0x80
- System call number is passed in RDI register and the return value is

stored in RAX register
- Parameters are passed using the registers in the following order

- RDI (syscall #), RSI (param #1), RDX (param #2), RCX(param #3), R8
(param #4), R9 (param #5)

- Let us write a new system call!

