
CS330: Operating Systems

Virtual memory: Address spaces

Recap: The process abstraction

- The OS creates a process when we run an executable

a.out
Execute $./a.out

 Process
 (a.out)

OS

- Executable is a file, stored in a
persistent storage (e.g., disk)

- To run, the process code and data
should reside in memory

- Run-time memory allocation and
deallocation should be supported

Executable file to process memory view

- A typical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?

Code

Data (Static)

Executable file to process memory view

- A typical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

Code

Data (Static)

Stack

Heap

Executable file to process memory view

- A typical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation
- Stack: function call and return, store local (stack) variables

Code

Data (Static)

Stack

Heap

Executable file to process memory view

- A typical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation
- Stack: function call and return, store local (stack) variables
- Heap: dynamic memory allocation through APIs like malloc()

Code

Data (Static)

Stack

Heap

The address space abstraction

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is same for all the
processes (convenience)

- Exact layout can be decided by the OS,
conventional layout is shown

The address space abstraction

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is the same for all
the processes

- Exact layout can be decided by the OS,
conventional layout is shown

- If all processes have same address space, how they map to actual memory?
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?
-

The address space abstraction

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is the same for all
the processes

- Exact layout can be decided by the OS,
conventional layout is shown

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory

virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?
-

OS during program load (exec)

OS

PCB (new)

Code

Data (Static)

Stack

Heap

Free

Memory state

0x0

0xFFFF

 PC = 0x0

 SP = 0x10000

- A fresh address space is
initialized

- In reality, parent address space
copied at the time of fork() is
reset and re-initialized

- PC and SP are set with addresses
of code and stack, respectively

OS during program load (exec)

OS

PCB (new)

Code

Data (Static)

Stack

Heap

Free

Memory state

0x0

0xFFFF

 PC = 0x0

 SP = 0x10000

Code (loaded from exe)

Data (created)

DRAM

- Physical memory for code and
data allocated, executable code
(text section) is loaded

-

OS during program load (exec)

OS

PCB (new)

Code

Data (Static)

Stack

Heap

Free

Memory state

0x0

0xFFFF

 PC = 0x0

 SP = 0x10000

Code (loaded from exe)

Data (created)

DRAM

Translation Reg.

- Translation information updated
- Process is ready to execute
- Executes when register state in

PCB is loaded onto the CPU

 Virtual to physical
translation
information

The address space abstraction

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is the same for all
the processes

- Exact layout can be decided by the OS,
conventional layout is shown

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory

virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- Creating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?

User API for memory management

OSPCB (new)

Code

Data (Static)

Stack

Heap

Free

Memory state

 PC = 0x0

 SP = 0x10000

 Translation

USERAllocate
Deallocate
Expand

- User API to (de)allocate heap
memory with different access
permissions

- OS changes the memory state
according to the user request

- User has no direct control on
physical memory

The address space abstraction

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is the same for all
the processes

- Exact layout can be decided by the OS,
conventional layout is shown

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory

virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- Creating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?
- Maintain the address space and enforce access permissions

