CS330: Operating Systems

Virtual memory: Address spaces

Recap: The process abstraction

- The OS creates a process when we run an executable

a.out

Execute

$./a.out

0S

Y

Process
(a.out)

- Executable is a file, stored in a
persistent storage (e.g., disk)

- To run, the process code and data
should reside in memory

- Run-time memory allocation and
deallocation should be supported

Executable file to process memory view

Code

Data (Static)

- Atypical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?

Executable file to process memory view

Code Stack

Data (Static) Heap

- Atypical executable file contains code and statically allocated data
- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

Executable file to process memory view

Code Stack

Data (Static) Heap

- Atypical executable file contains code and statically allocated data

- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

- Stack: function call and return, store local (stack) variables

Executable file to process memory view

Code Stack

Data (Static) Heap

- Atypical executable file contains code and statically allocated data

- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

- Stack: function call and return, store local (stack) variables

- Heap: dynamic memory allocation through APIs like malloc()

The address space abstraction

Code
- Address space represents memory state of
Data (Static)
a process
Heap .
- Address space layout is same for all the
l processes (convenience)

- Exact layout can be decided by the OS,
conventional layout is shown

|
L]
n
()

The address space abstraction

| Code |

- If all processes have same address space, how they map to actual memory?
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?

|
I
I
I
|
I
I
I
|
>
I
I
|
I
I
I
|
I
I

The address space abstraction

| |
- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory
virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?
- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?

- |

OS during program load (exec)

PCB (new)

PC = 0x0

SP = 0x10000

A fresh address space is
initialized

- In reality, parent address space

Code

copied at the time of fork() is

Memory state

Data (Static)

reset and re-initialized

0S

PCand SP are set with addresses
of code and stack, respectively

OXFFFF

OS during program load (exec)

- Physical memory for code and

PCB (new)
data allocated, executable code
PC = 0x0] .
(text section) is loaded
SP = 0x10000
10x0
Code
Data (Static) Code (loaded from exe)
Memory state Heap
_______________ |
Free :
05 : Data (created)
Stack

OXFFFF DRAM

ring program load (exec
OS during prog () Translation information updated

PCB (new) Virtual tophysical | - Process is ready to execute
translation) .
PG = 0x0 information - Executes when register state in
SP = 0x10000 PCB is loaded onto the CPU
10x0
Translation Reg. Code
. Code (loaded from exe)
Data (Static)
Memory state Heap
_______________ |
Free :
05 : Data (created)
Stack

OXFFFF DRAM

The address space abstraction

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory
virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?
- How CPU register state is changed?
- (reating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?

User API for memory management

PCB (new)

PC = 0x0

SP = 0x10000

0S

Allocate

Deallocate

Expand
-

USER

Translation

Code

Memory state

Data (Static)

User API to (de)allocate heap

memory with different access
permissions

0S changes the memory state
according to the user request

User has no direct control on

physical memory

The address space abstraction

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory

virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?

- (reating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?
- Maintain the address space and enforce access permissions

