CS330: Operating Systems

Virtual memory: Address spaces



Recap: The process abstraction

- The OS creates a process when we run an executable
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- Executable is a file, stored in a
persistent storage (e.g., disk)

- To run, the process code and data
should reside in memory

- Run-time memory allocation and
deallocation should be supported



Executable file to process memory view

Code
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- Atypical executable file contains code and statically allocated data
- Statically allocated: global and static variables
- Is loading the program (code and data) sufficient for program execution?



Executable file to process memory view
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- Atypical executable file contains code and statically allocated data
- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation



Executable file to process memory view

Code Stack

Data (Static) Heap

- Atypical executable file contains code and statically allocated data

- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

- Stack: function call and return, store local (stack) variables



Executable file to process memory view

Code Stack

Data (Static) Heap

- Atypical executable file contains code and statically allocated data

- Statically allocated: global and static variables

- Is loading the program (code and data) sufficient for program execution?
- No, we need memory for stack and dynamic allocation

- Stack: function call and return, store local (stack) variables

- Heap: dynamic memory allocation through APIs like malloc()



The address space abstraction

Code
- Address space represents memory state of
Data (Static)
a process
Heap .
- Address space layout is same for all the
l processes (convenience)

- Exact layout can be decided by the OS,
conventional layout is shown
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The address space abstraction

| Code |

- If all processes have same address space, how they map to actual memory?
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?
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The address space abstraction

| |
- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory
virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?
- How CPU register state is changed?
- What is the OS role in dynamic memory allocation?

- |




OS during program load (exec)
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A fresh address space is
initialized

- In reality, parent address space

Code

copied at the time of fork( ) is
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of code and stack, respectively
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OS during program load (exec)

- Physical memory for code and
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ring program load (exec
OS during prog ( ) Translation information updated

PCB (new) Virtual tophysical | - Process is ready to execute
translation ) .
PG = 0x0 information - Executes when register state in
SP = 0x10000 PCB is loaded onto the CPU
10x0
Translation Reg. Code
. Code (loaded from exe)
Data (Static)
Memory state Heap
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Free :
05 : Data (created)
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OXFFFF DRAM




The address space abstraction

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory
virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?
- How CPU register state is changed?
- (reating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?



User API for memory management
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User API to (de)allocate heap

memory with different access
permissions

0S changes the memory state
according to the user request

User has no direct control on

physical memory



The address space abstraction

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS techniques to perform memory

virtualization i.e., translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?

- (reating address space, loading binary, updating the PCB register state
- What is the OS role in dynamic memory allocation?
- Maintain the address space and enforce access permissions



