CS330: Operating Systems

Virtual Memory: Address translation

Recap: Process address space

- Address space abstraction provides the same view of memory to *all processes*
 - Address space is virtual
 - OS enables this virtual view

Recap: Process address space

- Address space abstraction provides the same view of memory to *all processes*
 - Address space is virtual
 - OS enables this virtual view
- User can organize/manage virtual memory using OS APIs
 - No control on physical memory!

Recap: Process address space

- Address space abstraction provides the same view of memory to *all processes*
 - Address space is virtual
 - OS enables this virtual view
- User can organize/manage virtual memory using OS APIs
 - No control on physical memory!

Agenda: Virtual to physical address translation

Translation at address space granularity

- Physical memory of same size as the address space size is allocated to each process
- Physical memory for a process can be at any address, but should be contiguous

Translation at address space granularity

- How virtual address is translated to physical address?
- 8K How memory isolation is achieved?
 - What happens on a context switch?
 - Advantages and disadvantages of this scheme

ISA: commonly used addressing modes (x86)

- At a high-level, instructions contains two parts: opcode and operand
 - ISA defines binary encoding of opcodes, mode and register operands (more complex in practice)
- Operands can be specified in multiple ways
 - Register: mov %rcx, %rax
 - Immediate:
 - Absolute:
 - Indirect:
 - Displacement:

mov \$5, %rax mov 8000000, %rax mov (%rcx), %rax mov -16(%rbp), %rax

X86 ISA: examples

- Access local variables using %rbp (examples)
- long a = 100, b =20, c;
 - mov \$100, -8(%rbp); mov \$20, -16(%rbp)
- c = a + b;
 - mov -8(%rbp), %rax; mov -16(%rbp), %rcx;
 - add %rcx, %rax; mov %rax, -24(%rbp)
- PC relative jump/call
 - jmp 0x20(%rip)
 - call -0x20(%rip)

Role of the compiler

Simple function

func()
{
 long a = 100;
 a+=10;

}

Compiled assembly

func:

- 10: push %rbp;
- 12: mov %rsp, %rbp;
- 16: mov \$100, -8(%rbp);
- 20: mov -8(%rbp), %rax
- 24: add \$10, %rax
- 29: mov %rax, -8(%rbp)
- 33: pop %rbp;

<u>35: ret;</u>

- Compiler can generate the code assuming starting of the code address as zero
- Compiler does not know the stack address, blindly uses the registers (rbp, rsp)!

The OS exec handler

- Allocates 8KB physical memory -
- Loads code and data into the allocated physical memory
- The PCB memory state is updated based on the executable format

- When the process returns to user space, the registers are loaded with virtual addresses
 - PC = 0 and SP = 8KB

- When the process returns to user space, the registers are loaded with virtual addresses
- Code is loaded into physical memory (@20KB)
- At the start of "func" execution
 - Instruction fetch address is 10
 - SP will be around 8KB

Here is a base register. I will add the value of base register with the virtual address generated by the program to get the physical address. All yours buddy!

CPU

Translation

- In this case, base register value should be 20KB
- InsFetch (vaddr = 10) \Rightarrow InsFetch (paddr = 20KB +10)
- How "push %rbp" works?

Translation

- In this case, base register value should be 20KB
- InsFetch (vaddr = 10) \Rightarrow InsFetch (paddr = 20KB +10)
 - How "push %rbp" works?
 - Assuming RSP = 8KB, "push %rbp" results in a memory store at address (8KB - 8)
 - CPU translates the address to (28KB 8)

Translation at address space granularity

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.
- **The hardware performs the translation using the base value.**
 - How memory isolation is achieved?

Ο

- What happens on a context switch?
- Advantages and disadvantages of this scheme

Isolation: How to stop illegal access?

Isolation: How to stop illegal accesses?

Isolation: How to stop illegal accesses?

Isolation: How to stop illegal accesses?

Translation at address space granularity

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.

40KR

- **SK** The hardware performs the translation using the base value.
 - How memory isolation is achieved?
 - Limit register can be used to enforce memory isolation
 - What happens on a context switch?
 - Advantages and disadvantages of this scheme

Context switch and translation information

- The base and limit register values can be saved in the outgoing process PCB during context switch
- Loaded from PCB to the CPU when a process is scheduled

Context switch and translation information

- The base and limit register values can be saved in the outgoing process PCB during context switch
- Loaded from PCB to the CPU when a process is scheduled
- (WE-2) User-to-OS context switching

Translation at address space granularity $_{{}_{\mathbb{P}^1}}$

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.
 The hardware performs the translation using the base value.
- How memory isolation is achieved?

8K

- Limit register can be used to enforce memory isolation
- What happens on a context switch?
- Save and restore limit and base registers
- Advantages and disadvantages of this scheme

Translation at address space granularity: Issues

- Physical memory must be greater than address space size
 - Unrealistic, against the philosophy of address space abstraction
 - Small address space size ⇒ Unhappy user

Translation at address space granularity: Issues

- Physical memory must be greater than address space size
 - Unrealistic, against the philosophy of address space abstraction
 - Small address space size ⇒ Unhappy user
- Memory inefficient
 - Physical memory size is same as address space size irrespective of actual usage ⇒ Memory wastage
 - Degree of multiprogramming is very less