
CS330: Operating Systems

Virtual Memory: Address translation

Recap: Process address space

Code

Data

Stack

Heap

Free

- Address space abstraction provides the
same view of memory to all processes

- Address space is virtual
- OS enables this virtual view

Recap: Process address space

Code

Data

Stack

Heap

Free

- Address space abstraction provides the
same view of memory to all processes

- Address space is virtual
- OS enables this virtual view

- User can organize/manage virtual
memory using OS APIs

- No control on physical memory!

Recap: Process address space

Code

Data

Stack

Heap

Free

- Address space abstraction provides the
same view of memory to all processes

- Address space is virtual
- OS enables this virtual view

- User can organize/manage virtual
memory using OS APIs

- No control on physical memory!

Agenda: Virtual to physical address translation

Translation at address space granularity
Code
Data

Stack

Heap

Code
Data

Stack

Heap

P2

P1

P1

P2

RAM

0

8KB

0

8KB

20KB

28KB

32KB

40KB

- Physical memory of same size as
the address space size is allocated
to each process

- Physical memory for a process can
be at any address, but should be
contiguous

Translation at address space granularity
Code
Data

Stack

Heap

Code
Data

Stack

Heap

P2

P1

P1

P2

RAM

0

8KB

0

8KB

20KB

28KB

32KB

40KB

- Physical memory of same size as
of the address space is allocated
to each process

- Physical memory for a process can
be at any address, but should be
contiguous

- How virtual address is translated to physical address?
- How memory isolation is achieved?
- What happens on a context switch?
- Advantages and disadvantages of this scheme

ISA: commonly used addressing modes (x86)

- At a high-level, instructions contains two parts: opcode and operand
- ISA defines binary encoding of opcodes, mode and register operands

(more complex in practice)
- Operands can be specified in multiple ways

- Register: mov %rcx, %rax
- Immediate: mov $5, %rax
- Absolute: mov 8000000, %rax
- Indirect: mov (%rcx), %rax
- Displacement: mov -16(%rbp), %rax

X86 ISA: examples

- Access local variables using %rbp (examples)
- long a = 100, b =20, c;

- mov $100, -8(%rbp); mov $20, -16(%rbp)
- c = a + b;

- mov -8(%rbp), %rax; mov -16(%rbp), %rcx;
- add %rcx, %rax; mov %rax, -24(%rbp)

- PC relative jump/call
- jmp 0x20(%rip)
- call -0x20(%rip)

Role of the compiler

func()
{
 long a = 100;
 a+ = 10;
}

func:
10: push %rbp;
12: mov %rsp, %rbp;
16: mov $100, -8(%rbp);
20: mov -8(%rbp), %rax
24: add $10, %rax
29: mov %rax, -8(%rbp)
33: pop %rbp;
35: ret;

Simple function

Compiled assembly

- Compiler can generate
the code assuming
starting of the code
address as zero

- Compiler does not
know the stack
address, blindly uses
the registers (rbp, rsp)!

Address space to memory translation
Code
Data

Stack

Heap

push %rbp;
mov %rsp, %rbp;

P1

RAM

0

8KB

20KB

28KB

The OS exec handler

- Allocates 8KB physical memory
- Loads code and data into the

allocated physical memory
- The PCB memory state is updated

based on the executable format

Process state after exec()

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB - When the process returns to user space, the
registers are loaded with virtual addresses

- PC = 0 and SP = 8KB

Kernel stack

User execution state
PC = 0

SP = 8KB

Process state after exec()

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

- When the process returns to user space, the
registers are loaded with virtual addresses

- Code is loaded into physical memory (@20KB)
- At the start of “func” execution

- Instruction fetch address is 10 (PC = 10)
- SP will be around 8KB

Kernel stack

User execution state
PC = 0

SP = 8KB

Process state after exec()

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

- When the process returns to user space, the
registers are loaded with virtual addresses

- Code is loaded into physical memory (@20KB)
- At the start of “func” execution

- Instruction fetch address is 10
- SP will be around 8KB

Kernel stack

User execution state
PC = 0

SP = 8KB

OS

Dear HW! I have done my
part. Help me with the
translation, please!

Process state after exec()

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

Kernel stack

User execution state
PC = 0

SP = 8KB CPU

Here is a base register. I will add
the value of base register with
the virtual address generated by
the program to get the physical
address. All yours buddy!

Process state after exec()

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

PCB

User execution state
PC = 0

SP = 8KB CPU

Here is a base register. I will add
the value of base register with
the virtual address generated by
the program to get the physical
address. All yours buddy!

OS
Hurray! I will configure the
value of base register as per
my need. I see some light
atlast!

Translation

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

- In this case, base register value should be 20KB
- InsFetch (vaddr = 10) ⇒ InsFetch (paddr = 20KB +10)
- How “push %rbp” works?

CPU

T_base = 20KB

PC = 0

SP = 8KB

Translation

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

- In this case, base register value should be 20KB
- InsFetch (vaddr = 10) ⇒ InsFetch (paddr = 20KB +10)
- How “push %rbp” works?
- Assuming RSP = 8KB, “push %rbp” results in a memory

store at address (8KB - 8)
- CPU translates the address to (28KB - 8)

CPU

T_base = 20KB

PC = 0

SP = 8KB

Translation at address space granularity
Code
Data

Stack

Heap

Code
Data

Stack

Heap

P2

P1

P1

P2

RAM

0

8KB

0

8KB

20KB

28KB

32KB

40KB

- Physical memory of same size as
of the address space is allocated
to each process

- Physical memory for a process can
be at any address, but should be
contiguous

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.

The hardware performs the translation using the base value.
- How memory isolation is achieved?
- What happens on a context switch?
- Advantages and disadvantages of this scheme

Isolation: How to stop illegal access?

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

CPU

T_base = 20KB

PC = 0

SP = 8KB

OS How can I stop a program from
accessing VA = 20KB? If not
stopped, the program gets
access to physical address
40KB. I do not want to break
my promise of isolation.

Isolation: How to stop illegal accesses?

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

CPU

T_base = 20KB

PC = 0

SP = 8KB

Once a cry baby always a cry
baby! I also provide a limit
register to enforce the limit
during translation. Before you
ask, these registers can only be
changed from privileged mode

T_limit = 8KB

Isolation: How to stop illegal accesses?

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

CPU

T_base = 20KB

PC = 0

SP = 8KB

T_limit = 8KB

- The hardware raises a fault if some program violates the
limit.

- The OS fault handler may kill the process

Once a cry baby always a cry
baby! I also provide a limit
register to enforce the limit
during translation. Before you
ask, these registers can only be
changed from privileged mode

Isolation: How to stop illegal accesses?

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax

RAM

20KB

28KB

CPU

T_base = 20KB

PC = 0

SP = 8KB

T_limit = 8KB

- The hardware raises a fault if some program violates the
limit.

- The OS fault handler may kill the process
- (WE-1) T_base and T_limit values across processes

Once a cry baby always a cry
baby! I also provide a limit
register to enforce the limit
during translation. Before you
ask, these registers can only be
changed from privileged mode

Translation at address space granularity
Code
Data

Stack

Heap

Code
Data

Stack

Heap

P2

P1

P1

P2

RAM

0

8KB

0

8KB

20KB

28KB

32KB

40KB

- Physical memory of same size as
of the address space is allocated
to each process

- Physical memory for a process can
be at any address, but should be
contiguous

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.

The hardware performs the translation using the base value.
- How memory isolation is achieved?
- Limit register can be used to enforce memory isolation
- What happens on a context switch?
- Advantages and disadvantages of this scheme

Context switch and translation information

- The base and limit register values can be saved in the outgoing process
PCB during context switch

- Loaded from PCB to the CPU when a process is scheduled

Context switch and translation information

- The base and limit register values can be saved in the outgoing process
PCB during context switch

- Loaded from PCB to the CPU when a process is scheduled
- (WE-2) User-to-OS context switching

Translation at address space granularity
Code
Data

Stack

Heap

Code
Data

Stack

Heap

P2

P1

P1

P2

RAM

0

8KB

0

8KB

20KB

28KB

32KB

40KB

- Physical memory of same size as
of the address space is allocated
to each process

- Physical memory for a process can
be at any address, but should be
contiguous

- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location.

The hardware performs the translation using the base value.
- How memory isolation is achieved?
- Limit register can be used to enforce memory isolation
- What happens on a context switch?
- Save and restore limit and base registers
- Advantages and disadvantages of this scheme

Translation at address space granularity: Issues

- Physical memory must be greater than address space size
- Unrealistic, against the philosophy of address space abstraction
- Small address space size ⇒ Unhappy user

Translation at address space granularity: Issues

- Physical memory must be greater than address space size
- Unrealistic, against the philosophy of address space abstraction
- Small address space size ⇒ Unhappy user

- Memory inefficient
- Physical memory size is same as address space size irrespective of

actual usage ⇒ Memory wastage
- Degree of multiprogramming is very less

