
CS330: Operating Systems

Virtual Memory: Address translation
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Agenda: Virtual to physical address translation 
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- How virtual address is translated to physical address?
- How memory isolation is achieved?
- What happens on a context switch?
- Advantages and disadvantages of this scheme



ISA: commonly used addressing modes (x86)

- At a high-level, instructions contains two parts: opcode and operand
- ISA defines binary encoding of opcodes, mode and register operands 

(more complex in practice)
- Operands can be specified in multiple ways

- Register:                   mov %rcx, %rax       
- Immediate:               mov $5, %rax
- Absolute:                  mov 8000000, %rax 
- Indirect:                    mov (%rcx), %rax
- Displacement:          mov -16(%rbp), %rax



X86 ISA: examples

- Access local variables using %rbp (examples)
- long a = 100, b =20, c; 

- mov $100, -8(%rbp); mov $20, -16(%rbp)   
- c = a + b;   

- mov -8(%rbp), %rax;  mov -16(%rbp), %rcx; 
- add %rcx, %rax; mov %rax, -24(%rbp)  

- PC relative jump/call
- jmp 0x20(%rip)
- call -0x20(%rip)



Role of the compiler

func( )
{
   long a = 100;
   a+ = 10;
}

func:
10:     push %rbp;
12:     mov %rsp, %rbp;
16:     mov $100, -8(%rbp);
20:    mov -8(%rbp), %rax
24:     add $10, %rax
29:     mov %rax, -8(%rbp)
33:     pop %rbp;
35:     ret;

Simple function

Compiled assembly  

- Compiler can generate 
the code assuming 
starting of the code 
address as zero

- Compiler does not 
know the stack 
address, blindly uses 
the registers (rbp, rsp)!
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based on the executable format
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Dear HW! I have done my 
part. Help me with the 
translation, please!
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Process state after exec( )

(+10) push %rbp;
 mov %rsp, %rbp;
 mov (%rbp), %rax
 add $10, %rax
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User execution state 
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Here is a base register. I will add 
the value of base register with 
the virtual address generated by 
the program to get the physical 
address. All yours buddy!

OS
Hurray! I will configure the 
value of base register as per 
my need.  I see some light 
atlast! 
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Translation
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- In this case, base register value should be 20KB
- InsFetch (vaddr = 10) ⇒ InsFetch (paddr = 20KB +10) 
- How “push %rbp” works?
- Assuming RSP = 8KB,  “push %rbp” results in a memory 

store at address (8KB - 8)
- CPU translates the address to (28KB - 8)  
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Isolation: How to stop illegal access?
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accessing VA = 20KB? If not 
stopped,  the program gets 
access to physical address 
40KB. I do not want to break 
my promise of  isolation. 
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Context switch and translation information

- The base and limit register values can be saved in the outgoing process 
PCB during context switch 

- Loaded from PCB to the CPU when a process is scheduled
- (WE-2) User-to-OS context switching
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- How virtual address is translated to physical address?
- The OS sets the base register value depending on the physical location. 

The hardware performs the translation using the base value. 
- How memory isolation is achieved?
- Limit register can be used to enforce memory isolation
- What happens on a context switch?
- Save and restore limit and base registers
- Advantages and disadvantages of this scheme
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- Physical memory must be greater than address space size
- Unrealistic, against the philosophy of address space abstraction
- Small address space size ⇒ Unhappy user 



Translation at address space granularity: Issues 

- Physical memory must be greater than address space size
- Unrealistic, against the philosophy of address space abstraction
- Small address space size ⇒ Unhappy user 

- Memory inefficient
- Physical memory size is same as address space size irrespective of 

actual usage ⇒ Memory wastage
- Degree of multiprogramming is very less  


