
CS330: Operating Systems

Threads

What is a thread?

- Threads are (almost!) independent execution entities of a single process

What is a thread?

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled different CPUs in a

concurrent manner.

What is a thread?

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled different CPUs in a

concurrent manner. Therefore,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

What is a thread?

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled different CPUs in a

concurrent manner. Therefore,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?

What is a thread?

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled different CPUs in a

concurrent manner. Therefore,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

Multi-threaded processes

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled in an independent manner on

single/multiple CPUs concurrently. By implication,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

- Why multithreading is useful?
- How does OS maintain thread related information?
- How stacks for multiple threads are managed?
- What is POSIX thread API? How is it used?

Leverage multi-core systems

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

Leverage multi-core systems

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Example parallel computation models
- Data parallel processing: Data is partitioned into disjoint sets and

assigned to different threads
- Task parallel processing: Each thread performs a different computation

on the same data

Example: Finding MAX

- Given N elements and a function f, we are required to find the element e
such that f(e) is maximum

- If the computation time for function f is significant, we can employ
multithreading with K threads using the following strategy

- Partition N elements into K non-overlapping sets and assign each thread to
compute the MAX within its own set

- When all threads complete, we find out the global maximum

Multi-threaded processes

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled in an independent manner on

single/multiple CPUs concurrently. By implication,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

- Why multithreading is useful?
- Efficient execution on multicore systems, overlapping I/O and processing
- How does OS maintain thread related information?
- How stacks for multiple threads are managed?
- What is POSIX thread API? How is it used?

PCB of a multithreaded process
PCB

Code

Data

Stack

Heap

Memory state

File state

CR3

- Thread information is stored in
thread control blocks (TCB) which is
pointed to from the PCB

- TCB contains the register state
which is used to save/restore CPU
state during context switch

Page table

Thread Control
Blocks

Thread 1

Register state

Other information

Thread 2

Register state

Other information

Other information
Pid, #threads etc.

PCB of a multithreaded process (Linux)
PCB (main)

Code

Data

Stack

HeapMemory state

File state

CR3

Page table

PCB (Thread 1)

Memory state

File state

CR3

PID, TGID, Parent PID, TGID, Parent

- Thread is represented by a separate
PCB, elements point to the structure
containing subsystem level info.

Register state Register state

Multi-threaded processes

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled in an independent manner on

single/multiple CPUs concurrently. By implication,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

- Why multithreading is useful?
- Efficient execution on multicore systems, overlapping I/O and processing
- How does OS maintain thread related information?
- Maintain thread information using separate PCB or using TCB
- How stacks for multiple threads are managed?
- What is POSIX thread API? How is it used?

Stack for multi-threaded processes

PCB (main)

Code

Stack (main)

Heap

CR3

Page table PCB (Thread 1)

CR3

- Stack for threads dynamically allocated from the address space using mmap(
) system call and passed to the OS during thread creation

SP SP

Stack (Thread 1)

Multi-threaded processes

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled in an independent manner on

single/multiple CPUs concurrently. By implication,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

- Why multithreading is useful?
- Efficient execution on multicore systems, overlapping I/O and processing
- How does OS maintain thread related information?
- Maintain thread information using separate PCB or using TCB
- How stacks for multiple threads are managed?
- Stacks for threads are allocated using memory allocation APIs
- What is POSIX thread API? How is it used?

Posix thread API (pthread_create)
int pthread_create(pthead_t *tid, pthread_attr_t *attr,
 void * (*thfunc) (void*), void *arg);

- Creates a thread with “tid” as its handle and the thread starts executing the
function pointed to by the “thfunc” argument

- A single argument (of type void *) can be passed to the thread
- Thread attribute can be used to control the thread behavior e.g., stack size,

stack address etc. Passing NULL sets the defaults
- Returns 0 on success.
- Thread termination: return from thfunc, pthread_exit() or pthread_cancel()
- In Linux, pthread_create and fork implemented using clone() system call

Posix thread API (pthread_join)

int pthread_join(pthead_t tid, void **retval)

- This call waits for the thread with handle “tid” to finish
- The return value of the thread is captured using the “retval” argument

- The thread must allocate the return value which is freed after the
process joins

- Invoking pthread_join for an already finished thread returns immediately

Multi-threaded processes

- Threads are (almost!) independent execution entities of a single process
- Threads of a single process can be scheduled in an independent manner on

single/multiple CPUs concurrently. By implication,
- Each thread has a different register state and stack
- At a given point of time, PC of different threads can be different

- How threads are different from processes?
- Threads of a single process share the address space
- Context switch between two threads of a process does not require

switching the address space

- Why multithreading is useful?
- Efficient execution on multicore systems, overlapping I/O and processing
- How does OS maintain thread related information?
- Maintain thread information using separate PCB or using TCB
- How stacks for multiple threads are managed?
- Stacks for threads are allocated using memory allocation APIs
- What is POSIX thread API? How is it used?
- Easy to use thread library with OS support. Important APIs: pthread_create,

pthread_join

