CS330: Operating Systems

Virtual memory: Segmentation



@)

8KB

8KB

Recap: Translation at address space granularity

Code

Data

Heap

Stack

P2

Code

Data

Heap

Stack

P1

P2

20KB

28KB
32.KB

RAM

40KB

Physical memory of same size as
the address space size is allocated
to each process

Issues: Memory inefficient,
inflexible



@)

8KB

8KB

Recap: Translation at address space granularity

Code

Data

Heap

Stack

P2

Code

Data

Heap

Stack

P1

P2

- Physical memory of same size as
the address space size is allocated

20KB to each process
- Issues: Memory inefficient,
inflexible
28KB
32KB

[Agenda: Translation at segment granularity}

RAM

40KB



Segmentation

@)

1KB

3KB

Code

Heap

Address space

o)
Code segment
Base = 28KB
Limit = 1KB 2O0KB
Data segment
22KB
Base = 20KB
Limit = 2KB 2.8KB
29KB
31KB
Stack segment
Base = 32KB 32KB
Limit = 1KB 48KB

RAM

Extension of the
basic scheme with
more base-limit
register pairs



Segmentation

@)

1KB

3KB

Code

Heap

Address space

o)
Code segment
Base = 28KB
Limit = 1KB 2O0KB
Data segment
22KB
Base = 20KB
Limit = 2KB 2.8KB
29KB
31KB
Stack segment
Base = 32KB 32KB
Limit = 1KB 48KB

RAM

- Example

Code address
Data address



Segmentation

- How the CPU decides which segment to use?

- How stack growth in opposite direction handled?
- What happens on context switch?

- Advantages and disadvantages of segmentation



Segmentation: Explicit addressing

- Part of the address is used to explicitly specify segments
- Inour example,
- virtual address space = 8KB, address length = 13 bits and there are three
segments
- Two MSB bits used to specify the segment: “00” for code, “01” for data
and “11” for stack
- The hardware selects the segment register based on the value of two
MSB bits and rest of the bits are used as the offset
- Max.size of each segment = 2KB



Issues with explicit addressing

- Inflexible
- Data and stack can not be sized dynamically
- Wastage of virtual address space
- In our example, 2KB virtual address is unusable
- Note: Physical allocation is still done in an on-demand basis



Segmentation: Implicit addressing

- The hardware selects the segment register based on the operation
- (Code segment for instruction access
- Fetch address, jump target, call address



Segmentation: Implicit addressing

- The hardware selects the segment register based on the operation
- (Code segment for instruction access
- Fetch address, jump target, call address
- Stack segment for stack operations
- Arguments for push and pop, indirect addressing with SP, BP
- Data segment for other addresses



Segmentation

- How the CPU decides which segment to use?

- Explicit and implicit addressing

- How stack growth in opposite direction handled?
- What happens on context switch?

- Advantages and disadvantages of segmentation



Segmentation (protection and direction)

Flags

Limit

Base

Flags
D S R W X
\ J
|
l l Read
Direction Privilege Write
(+or-) Execute

- For stack, direction is -ve, used by hardware to calculate physical address
- "S”bit can be used to specify privilege, specifically useful in code segment
- R,Wand X can be used to enforce isolation and sharing



Segmentation in reality

DTR

CS

Flags Limit

Base

SS

DS

Flags Limit

Base

CPU

Flags Limit

Base

Descriptor Table

Flags

D

S

|

|

Direction Privilege

(+or-)

w

|
Read
Write
Execute

- Descriptor table register (DTR) is used to access the descriptor table

- # of descriptors depends on architecture
- Separate descriptors used for user and kernel mode




Segmentation

- How the CPU decides which segment to use?

- Explicit and implicit addressing

- How stack growth in opposite direction handled?

- Flag bits for direction of growth, access permissions
- What happens on context switch?

- Save and restore segment registers

- Advantages and disadvantages of segmentation



Advantages and disadvantages of segmentation

- Advantages
- Easy and efficient address translation
- Save memory wastage for unused addresses
- Disadvantages
- External fragmentation
- (an not support discontiguous sparse mapping



