CS330: Operating Systems

Virtual memory: Segmentation
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Segmentation
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Segmentation

- How the CPU decides which segment to use?

- How stack growth in opposite direction handled?
- What happens on context switch?

- Advantages and disadvantages of segmentation



Segmentation: Explicit addressing

- Part of the address is used to explicitly specify segments
- Inour example,
- virtual address space = 8KB, address length = 13 bits and there are three
segments
- Two MSB bits used to specify the segment: “00” for code, “01” for data
and “11” for stack
- The hardware selects the segment register based on the value of two
MSB bits and rest of the bits are used as the offset
- Max.size of each segment = 2KB



Issues with explicit addressing

- Inflexible
- Data and stack can not be sized dynamically
- Wastage of virtual address space
- In our example, 2KB virtual address is unusable
- Note: Physical allocation is still done in an on-demand basis



Segmentation: Implicit addressing

- The hardware selects the segment register based on the operation
- (Code segment for instruction access
- Fetch address, jump target, call address



Segmentation: Implicit addressing

- The hardware selects the segment register based on the operation
- (Code segment for instruction access
- Fetch address, jump target, call address
- Stack segment for stack operations
- Arguments for push and pop, indirect addressing with SP, BP
- Data segment for other addresses



Segmentation

- How the CPU decides which segment to use?

- Explicit and implicit addressing

- How stack growth in opposite direction handled?
- What happens on context switch?

- Advantages and disadvantages of segmentation



Segmentation (protection and direction)
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- For stack, direction is -ve, used by hardware to calculate physical address
- "S”bit can be used to specify privilege, specifically useful in code segment
- R,Wand X can be used to enforce isolation and sharing



Segmentation in reality
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- Descriptor table register (DTR) is used to access the descriptor table

- # of descriptors depends on architecture
- Separate descriptors used for user and kernel mode




Segmentation

- How the CPU decides which segment to use?

- Explicit and implicit addressing

- How stack growth in opposite direction handled?

- Flag bits for direction of growth, access permissions
- What happens on context switch?

- Save and restore segment registers

- Advantages and disadvantages of segmentation



Advantages and disadvantages of segmentation

- Advantages
- Easy and efficient address translation
- Save memory wastage for unused addresses
- Disadvantages
- External fragmentation
- (an not support discontiguous sparse mapping



