CS330: Operating Systems

Process scheduling

Recap: OS execution, user-OS mode switch

- Which stack is used by the OS for kernel-mode execution?

- The hardware switches the SP to point it to a pre-configured per-process 0S
stack on mode switch

- How the user process state preserved and restored?

- The user execution state is saved/restored using the kernel stack by the
hardware (and 0S)

- Which address space the OS uses?

- A part of the process address space is reserved for OS and is protected

[Agenda: Process context switch and scheduling J

Triggers for process context switch

| am ready to run. Just being
Process nice to others!
(user mode)

sched yield()

Y
Scheduler

> @

- The user process can invoke the scheduler through explicit system calls like
sched yield (see man page)

Triggers for process context switch

| am not ready to run. Please
ion!
B EESE suspend my execution!

(user mode)

sleep()

Y
Scheduler

> @

- The user process can invoke sleep() to suspend itself
- sleep() is not a system call in Linux, it uses nanosleep() system call

Triggers for process context switch

Process
(user mode)

read, write etc.

0S There is no point in running
\ this process as it has to wait
Syscall handler for some (I/0) event.
. Scheduler! You are on.
| wait
Scheduler

- This condition arises mostly during |/O related system calls
- Example: read() from a file on disk

Triggers for process context switch

Process

(user mode)
syscall*/trap
0S | am done with the handling. If
Y this process has occupied the
Syscall/trap handler CPU longer than its quota, you
can take a call!
l done
Scheduler

- The OS gets the control back on every system call and exception
- Before returning from syscall, the schedule can deschedule

Triggers for process context switch

Process
(user mode)

os

This is your explicit control.
Scheduler Exercise your powers as you
A wish!
Interrupt handler /

- Timer interrupts can be configured to generate interrupts periodically or
after some configured time
- The OS can invoke the scheduler after handling any interrupt

Process context switch

PCB (P1)
Kernel stack p
o f‘;ll?‘:tmn call H9)0S mode execution
istor
= <« SP
Execution state
(User)

|

@Entry to kernel

Process context switch

PCB (P1)
(4)Save execution state
Execution state
(Kernel) Scheduler
UT: P1, IN: P2
Kernel stack p
OSfunction call 19N g 15 de execution
histor
. <« SP
Execution state
(User)

|

@Entry to kernel

Process context switch

|

@Entry to kernel

PCB (P1) PCB (P2)
G)Save execution state @ Restore execution state
Execution state Execution state
(Kernel) Scheduler (Kernel)
UT: P1, IN: P2
Kernel stack sp sp Kernel stack
OS function call . OS function call
2
histor OS mode execution histor
: —— SP e
Execution state Execution state
(User) (User)

Process context switch

PCB (P1) PCB (P2)
G)Save execution state @ Restore execution state
Execution state Execution state
(Kernel) Scheduler (Kernel)
UT: P1, IN: P2
Kernel stack Kernel stack
OS function call 5P 5P g OS function call
: 2)0S5 mode execution @OS mode execution ;
histor histor
«—— SP SP
Execution state Execution state
(User) (User)
I - Crucial step: stack switching l

(DEntry to kemel (@) Exit to user

Scheduling

Ready Queue

P = pick_task() Schedule(P)
P, P, |P, [< Scheduler

- A queue of processes ready to execute is maintained

- The scheduler decides to pick the next process based on some scheduling
policy and performs a context switch

- The outgoing process is put back to ready queue (if required)

Scheduling

- How is the list of ready processes managed?
- What if there are no processes in ready queue? Can that happen?
- (an we classify the schedulers based on how they are invoked?

- What is a good scheduling strategy?

Process states and transitions

Descheduled

Most processes perform a mixture
of CPU and I/0 activities

When the process is waiting for an
/0, it is moved to waiting state
Nait for A process becomes ready again

1/0 or event when the event completion is
notified (e.g.,a device interrupt)

Scheduled

I/0 or event
notification

Scheduler overview

Deschedule

Ready Queue Exit

P P P, = 0OS Scheduler

K 2 1 CPU
A K \

Y

New process

P P, |P, <

Wait for event
Wait Queue

Scheduling

- How is the list of ready processes managed?

- Each process is associated with three primary states: Running, Ready and
Waiting. A process can moved to waiting state from running state, if needed.

- What if there are no processes in ready queue? Can that happen?

- (Can we classify the schedulers based on how they are invoked?

- What is a good scheduling strategy?

System idle process

P = pick_task() Schedule(P)
Idle = Scheduler

There can be an instance when there are zero processes in ready queue
A special process (system idle process) is always there

The system idle process halts the CPU

HLT instruction on X86_64: Halts the CPU till next interrupt

Ready Queue

Scheduling

- How is the list of ready processes managed?

- Each process is associated with three primary states: Running, Ready and
Waiting. A process can moved to waiting state from running state, if needed.

- What if there are no processes in ready queue? Can that happen?

- There is always an idle process which executes HLT

- (Can we classify the schedulers based on how they are invoked?

- What is a good scheduling strategy?

Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current
process execution behavior (non-preemptive)
- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an |/O or event

Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current
process execution behavior (non-preemptive)
- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an |/O or event
- The OS may invoke the scheduler in other conditions (preemptive)
- Return from system call (specifically fork())
- After handling an interrupt (specifically timer interrupt)

Scheduling

- How is the list of ready processes managed?

- Each process is associated with three primary states: Running, Ready and
Waiting. A process can moved to waiting state from running state, if needed.

- What if there are no processes in ready queue? Can that happen?

- There is always an idle process which executes HLT

- (Can we classify the schedulers based on how they are invoked?

- Non-preemptive: triggered by the process, Preemptive: OS interjections

- What is a good scheduling strategy?

Scheduling metrics

Turnaround time: Time of completion - Time of arrival
Objective: Minimize turnaround time

Scheduling metrics

Turnaround time: Time of completion - Time of arrival
Objective: Minimize turnaround time

Waiting time: Sum of time spent in ready queue
Objective: Minimize waiting time

Scheduling metrics

Turnaround time: Time of completion - Time of arrival
Objective: Minimize turnaround time

Waiting time: Sum of time spent in ready queue
Objective: Minimize waiting time

Response time: Waiting time before first execution
Objective: Minimize response time

Scheduling metrics

Turnaround time: Time of completion - Time of arrival
Objective: Minimize turnaround time

Waiting time: Sum of time spent in ready queue
Objective: Minimize waiting time

Response time: Waiting time before first execution
Objective: Minimize response time

Average value of above metrics represent the average efficiency

Scheduling metrics

Turnaround time: Time of completion - Time of arrival
Objective: Minimize turnaround time
Waiting time: Sum of time spent in ready queue
Objective: Minimize waiting time
Response time: Waiting time before first execution
Objective: Minimize response time
Average value of above metrics represent the average efficiency
Standard deviation represents fairness across different processes

