
CS330: Operating Systems

Process scheduling

Recap: OS execution, user-OS mode switch

Agenda: Process context switch and scheduling

- Which stack is used by the OS for kernel-mode execution?
- The hardware switches the SP to point it to a pre-configured per-process OS

stack on mode switch
- How the user process state preserved and restored?
- The user execution state is saved/restored using the kernel stack by the

hardware (and OS)
- Which address space the OS uses?
- A part of the process address space is reserved for OS and is protected

Triggers for process context switch

- The user process can invoke the scheduler through explicit system calls like
sched_yield (see man page)

Process
(user mode)

Scheduler

OS

I am ready to run. Just being
nice to others!

sched_yield()

Triggers for process context switch

- The user process can invoke sleep() to suspend itself
- sleep() is not a system call in Linux, it uses nanosleep() system call

Process
(user mode)

Scheduler

OS

I am not ready to run. Please
suspend my execution!

sleep()

Triggers for process context switch

- This condition arises mostly during I/O related system calls
- Example: read() from a file on disk

Process
(user mode)

Syscall handler

OS

read, write etc.

Scheduler

wait

There is no point in running
this process as it has to wait
for some (I/O) event.
Scheduler! You are on.

Triggers for process context switch

- The OS gets the control back on every system call and exception
- Before returning from syscall, the schedule can deschedule

Process
(user mode)

Syscall/trap handler

OS

syscall*/trap

Scheduler

done

I am done with the handling. If
this process has occupied the
CPU longer than its quota, you
can take a call!

Triggers for process context switch

- Timer interrupts can be configured to generate interrupts periodically or
after some configured time

- The OS can invoke the scheduler after handling any interrupt

Process
(user mode)

Interrupt handler

OS

Scheduler
This is your explicit control.
Exercise your powers as you
wish!

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

Entry to kernel

OS function call
history

1

SP

SP
OS mode execution2

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

 Execution state
 (Kernel)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

2

1

SP

3

SP

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

 Execution state
 (Kernel)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

PCB (P2)

 Execution state
 (Kernel)

Restore execution state

Kernel stack

Execution state
(User)

OS function call
history

2

1

5

SP SP

3

SP

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

 Execution state
 (Kernel)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

PCB (P2)

 Execution state
 (Kernel)

Restore execution state

Kernel stack

Execution state
(User)

OS function call
history

2

1

5

SP SP
OS mode execution6

 Exit to user7

3

SP SP

- Crucial step: stack switching

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- What if there are no processes in ready queue? Can that happen?
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?

Process states and transitions

Running

Waiting

Ready
Scheduled

Descheduled

Wait for
I/O or event

I/O or event
notification

- Most processes perform a mixture
of CPU and I/O activities

- When the process is waiting for an
I/O, it is moved to waiting state

- A process becomes ready again
when the event completion is
notified (e.g., a device interrupt)

Scheduler overview

CPUP1P2PK OS Scheduler

 P

New process
P1P2Pm

Wait for event

ExitReady Queue

Wait Queue

Deschedule

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?

System idle process

CPUIdle Scheduler
P = pick_task() Schedule(P)

Ready Queue

- There can be an instance when there are zero processes in ready queue
- A special process (system idle process) is always there
- The system idle process halts the CPU
- HLT instruction on X86_64: Halts the CPU till next interrupt

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?

Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current
process execution behavior (non-preemptive)

- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event

Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current
process execution behavior (non-preemptive)

- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event

- The OS may invoke the scheduler in other conditions (preemptive)
- Return from system call (specifically fork())
- After handling an interrupt (specifically timer interrupt)

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT
- Can we classify the schedulers based on how they are invoked?
- Non-preemptive: triggered by the process, Preemptive: OS interjections
- What is a good scheduling strategy?

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

- Average value of above metrics represent the average efficiency

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

- Average value of above metrics represent the average efficiency
- Standard deviation represents fairness across different processes

