
CS330: Operating Systems

Process

Recap

- OS bridges the semantic gap between the notions of application execution
and real execution

- How?
- By virtualizing the physical resources
- Creating abstractions with well defined interfaces

 Agenda: CPU → Process (OSTEP Ch4)

The process abstraction

- The OS creates a process when we run an executable

The process abstraction

- The OS creates a process when we run an executable

a.out
Execute $./a.out

 Process
 (a.out)

OS

The process abstraction

- The OS creates a process when we run an executable

a.out
Execute $./a.out

 Process
 (a.out)

OS

- Process is represented by a data
structure commonly known as
process control block (PCB)

- Linux → task_struct
- gemOS → exec_context

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process
- Program is persistent while process is volatile

- Program is identified by an executable, process by a PID

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process
- Program is persistent while process is volatile

- Program is identified by an executable, process by a PID

- Program → Process (1 to N)
- Many concurrent processes can execute the same program

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process
- Program is persistent while process is volatile

- Program is identified by an executable, process by a PID

- Program → Process (1 to N)
- Many concurrent processes can execute the same program

What about virtualizing the CPU?

Virtualization of the CPU

$./a.out

 Process
 (a.out)

BrowserMPlayer

 Process
(Browser)

 Process
(Mplayer)

 CPU

Everything is running! My
program (a.out) is printing
output and music is on!

OS

Virtualization of the CPU

$./a.out

 Process
 (a.out)

OS

BrowserMPlayer

 Process
(Browser)

 Process
(Mplayer)

 CPU

Everything is running! My
program (a.out) is printing
output and music is on!

CPU is actually assigned to
MPlayer. Who cares! I have
fooled the user.

Virtualization of the CPU

$./a.out

 Process
 (a.out)

OS

BrowserMPlayer

 Process
(Browser)

 Process
(Mplayer)

 CPU

Everything is running! My
program (a.out) is printing
output and music is on!

Let me change the CPU
assignment and continue fooling
the user.

Virtualization of the CPU

$./a.out

 Process
 (a.out)

OS

BrowserMPlayer

 Process
(Browser)

 Process
(Mplayer)

 CPU

Everything is running! My
program (a.out) is printing
output and music is on!

Let me change the CPU
assignment and continue fooling
the user.

- How CPU assignment is changed? (OR how context switch is performed?)
- What happens to outgoing process? How does it come back?

- Overheads of context switch?

- How to decide the incoming process?

Context switch: state of a process

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

 Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states

OS
 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

Context switch: saving the state of outgoing process

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

 Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states

OS
 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

Save

- ISA support for CPU register
state save is needed

- What is the value of PC during
“Save”?

Context switch: saving the state of outgoing process

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

 Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states

OS
 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

Save

- ISA support for CPU register
state save is needed

- What is the value of PC during
“Save”?

- PC points to memory containing
OS code

Context switch: load the state of incoming process

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

 Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states

OS
 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other statesLoad

- Loads the register state onto
the CPU

- ISA support for CPU register
state loading is needed
(specially PC!)

Context switch: load the state of incoming process

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

 Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states OS

 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

Done with context switch. Let
me relax till the next context
switch!

Virtualization of the CPU

$./a.out

 Process
 (a.out)

OS

BrowserMPlayer

 Process
(Browser)

 Process
(Mplayer)

 CPU

Everything is running! My
program (a.out) is printing
output and music is on!

Let me change the CPU
assignment and continue fooling
the user.

- How CPU assignment is changed? (OR how context switch is performed?)
- What happens to outgoing process? How does it come back?

- Using process scheduling, saving the state of the outgoing process and
loading the state of the incoming process (will revisit)

- Overheads of context switch?
- State save and restore, cache effects
- How to decide the incoming process?
- OS implements different types of process scheduling policies

Hidden behind the abstraction!

- How does OS get the control of the CPU?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?

- Why the process may not be ready?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?

- Why the process may not be ready?
- A process may be “sleeping” or waiting for I/O. Every process is associated

with a state i.e., ready, running, waiting (will revisit).

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?

- Why the process may not be ready?
- A process may be “sleeping” or waiting for I/O. Every process is associated

with a state i.e., ready, running, waiting (will revisit).
- What is the memory state of a process?

- How memory state is saved and restored?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?

- Why the process may not be ready?
- A process may be “sleeping” or waiting for I/O. Every process is associated

with a state i.e., ready, running, waiting (will revisit).
- What is the memory state of a process?

- How memory state is saved and restored?
- Memory itself virtualized. PCB + CPU registers maintain state (will revisit)

Example: hardware state of X86_64 (in gemOS)

struct user_regs{
u64 rip; // PC
u64 r15 - r8;
u64 rax, rbx, rcx, rdx, rsi, rdi;
u64 rsp; // stack pointer
u64 rbp; // base pointer
};

- All the registers shown here are
used directly/indirectly during
program execution

- General purpose registers (r8-r15,
rax, rbx etc.) are used for storage
and computation

- Register allocation is an
important aspect of a compiler

Example: hardware state of X86_64 (in gemOS)

struct user_regs{
u64 rip; // PC
u64 r15 - r8;
u64 rax, rbx, rcx, rdx, rsi, rdi;
u64 rsp; // stack pointer
u64 rbp; // base pointer
};

- What is a stack in the context of
hardware state? What is its use?

Example: hardware state of X86_64 (in gemOS)

struct user_regs{
u64 rip; // PC
u64 r15 - r8;
u64 rax, rbx, rcx, rdx, rsi, rdi;
u64 rsp; // stack pointer
u64 rbp; // base pointer
};

- What is a stack in the context of
hardware state?

- Points to the TOS address of a stack
in memory, operated by push and
pop instructions

Example: hardware state of X86_64 (in gemOS)

struct user_regs{
u64 rip; // PC
u64 r15 - r8;
u64 rax, rbx, rcx, rdx, rsi, rdi;
u64 rsp; // stack pointer
u64 rbp; // base pointer
};

- What is a stack pointer in the
context of hardware state?

- Points to the TOS address of a stack
in memory, operated by push and
pop instructions

- What is the use of stack?
- Makes it easy to implement function

call and return, store local variables

