CS330: Operating Systems

Process

Recap

- 0S bridges the semantic gap between the notions of application execution
and real execution
- How?
- By virtualizing the physical resources
- (reating abstractions with well defined interfaces

Agenda: CPU — Process (OSTEP Ch4)

The process abstraction

- The OS creates a process when we run an executable

The process abstraction

- The OS creates a process when we run an executable

Execute

$./a.out

a.out

0S Y

Process
(a.out)

The process abstraction

- The OS creates a process when we run an executable

out Execute $./a.out - Process is represented by a data
structure commonly known as
0S v process control block (PCB)

P - Linux — task struct
rocess -
(a.out) - gem0S — exec_context

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process

The process abstraction

- The OS creates a process when we run an executable
- Alternatively, A program in execution is called a process

- Program is persistent while process is volatile
- Program is identified by an executable, process by a PID

The process abstraction

The OS creates a process when we run an executable
Alternatively, A program in execution is called a process

Program is persistent while process is volatile
- Program is identified by an executable, process by a PID

Program — Process (1toN)
Many concurrent processes can execute the same program

The process abstraction

The OS creates a process when we run an executable
Alternatively, A program in execution is called a process

Program is persistent while process is volatile
- Program is identified by an executable, process by a PID

Program — Process (1toN)
Many concurrent processes can execute the same program

What about virtualizing the CPU?

Virtualization of the CPU

MPlayer $./a.out Browser
Process Process Process
(Mplayer) (a.out) (Browser)

Everything is running! My
program (a.out) is printing
output and music is on!

Virtualization of the CPU

MPlayer $./a.out Browser
| — 1
| |
: Process : Process Process
: (Mplayer) : (a.out) (Browser)
: :
| |
| |
| |
| |
: ! 0S
| |
| |
| |
| |

Everything is running! My
program (a.out) is printing
output and music is on!

CPU is actually assigned to
MPlayer. Who cares! | have
fooled the user.

Virtualization of the CPU

— o o e -)

MPlayer $./a.out Browser
—
| |
Process : Process : Process
(Mplayer) | ;| (a.out) /| (Browser)
: :
| |
| |
| |
| |
! ! 0S
| |
| |
| |
| |
| |

Everything is running! My
program (a.out) is printing
output and music is on!

Let me change the CPU
assignment and continue fooling
the user.

Virtualization of the CPU

- How CPU assignment is changed? (OR how context switch is performed?)
- What happens to outgoing process? How does it come back?

- Overheads of context switch?

- How to decide the incoming process?

— o o e -)

Context switch: state of a process

(o e o e o e e o e e e e e M M e M M M e e M M e e e M e e e e

Process (a.out)
05 Register state (R1, R2, PC)

Memory state
Other states

Process (MPlayer)
Register state (R1, R2, PC)

Memory state

: Other states |
i PC ’%/’Code i
|| Reg(R1) -Sto\re\yata
i Reg (R2) Load B i

Context switch: saving the state of outgoing process

Process (MPlayer) S : 0S i . Process (a.out)
Register state (R1, R2, PC) 2 : | Register state (R1, R2, PC)
Memory state '. Memory state
Other states | ' | Other states
L
%”Code - ISA support for CPU register
PC = state save is needed
Reg(R) " | pata - What is the value of PC during
Reg (R2) Load B Save™?

CPU Memory

Context switch: saving the state of outgoing process

R
Process (MPlayer) : 0S
Register state (R1, R2, PC) Save :
Memory state ,
Other states |
|

Process (a.out)
Register state (R1, R2, PC)
Memory state

Other states
%/’Code - ISA support for CPU register
PC B state save is needed
Reg(R) " | pata - What is the value of PC during
Reg (R2) Load B “Save™?
- PC points to memory containing
CPU Memory

OS code

Context switch: load the state of incoming process

Process (MPlayer)
Register state (R1, R2, PC)
Memory state
Other states

- Loads the register state onto

the CPU

- ISA support for CPU register

state loading is needed
(specially PC!)

Process (a.out)

Register state (R1, R2, PC)

Memory state
Other states

— ’%/’COde
Reg (R1) [+ Store \Data
Reg (R2) Load B

CPU Memory

Context switch: load the state of incoming process

Process (a.out)
Register state (R1, R2, PC)
Memory state

Process (MPlayer)
Register state (R1, R2, PC)
Memory state

I |

| |

| l

: !

| |

| |

Other states 05 Dlrir g ik :
@] ’

| |

/4‘ i ’%”C()de :

Done with context switch. Let | PC |
me relax till the next context ! Store '
! Reg (R1) = Data '

switch! : 9(R1) ”\» :
! Reg (R2) 0d :

o |

: .

| l

: !

| |

| |

Virtualization of the CPU

- How CPU assignment is changed? (OR how context switch is performed?)
- What happens to outgoing process? How does it come back?

- Using process scheduling, saving the state of the outgoing process and
loading the state of the incoming process (will revisit)

- Overheads of context switch?

- State save and restore, cache effects

- How to decide the incoming process?

- 0S implements different types of process scheduling policies

Hidden behind the abstraction!

- How does OS get the control of the CPU?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?

- Why the process may not be ready?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?
- Why the process may not be ready?
- Aprocess may be “sleeping” or waiting for /0. Every process is associated
with a state i.e., ready, running, waiting (will revisit).

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?
- Why the process may not be ready?
- Aprocess may be “sleeping” or waiting for /0. Every process is associated
with a state i.e., ready, running, waiting (will revisit).
- What is the memory state of a process?
- How memory state is saved and restored?

Hidden behind the abstraction!

- How does OS get the control of the CPU?
- In short, the OS configures the hardware to get the control. (will revisit)
- How the OS knows which process is “ready”?
- Why the process may not be ready?
- Aprocess may be “sleeping” or waiting for /0. Every process is associated
with a state i.e., ready, running, waiting (will revisit).
- What is the memory state of a process?
- How memory state is saved and restored?
- Memory itself virtualized. PCB + CPU registers maintain state (will revisit)

Example: hardware state of X86 64 (in gemOS)

struct user_regsi{

. - All the registers shown here are
u64 rip; /] PC

used directly/indirectly during

164 r15 - I'8; program execution

u64 rax, rbx, rex, rdx, rsi, rdi; - General purpose registers (r8-r15,
ué4 rsp; // stack pointer rax, rbx etc.) are used for storage
u64 rbp; // base pointer and computation

s - Register allocation is an

important aspect of a compiler

Example: hardware state of X86 64 (in gemOS)

struct user_regsi{
ue4 rip; // PC
u64 ris - r8;

- What is a stack in the context of
hardware state? What is its use?

u64 rax, rbx, rcx, rdx, rsi, rdi;
u64 rsp; // stack pointer
u64 rbp; // base pointer

1§

Example: hardware state of X86 64 (in gemOS)

struct user_regsi{
ue4 rip; // PC

- What is a stack in the context of
hardware state?

u64 ris - r8; - Points to the TOS address of a stack
u64 rax, rbx, rcx, rdx, rsi, rdi; in memory, operated by push and
ué4 rsp; // stack pointer pop instructions

u64 rbp; // base pointer
1§

Example: hardware state of X86 64 (in gemOS)

struct user_regs{

. - What is a stack pointer in the
u64 rip; /] PC

context of hardware state?

164 115 - 18; - Points to the TOS address of a stack
ué4 rax, rbx, rex, rdx, rsi, rdi; in memory, operated by push and
ué4 rsp; // stack pointer pop instructions

ué4 rbp; // base pointer - What is the use of stack?

1. - Makes it easy to implement function

call and return, store local variables

