
CS330: Operating Systems

Process API: System calls

Recap: The process abstraction

- The OS creates a process when we run an executable

a.out
Execute $./a.out

- When we execute “a.out” on a
shell a process control block
(PCB) is created

- Does it raise some questions
related to the exact working?

 PCB (a.out)
CPU state
PID
Memory state
File state
…..

OS

Process creation: What and How?

- How does OS come into action after typing “./a.out” in a shell?
- Who invokes the system calls?
- What exact system calls are invoked?
- Where is the genesis? What is the first user process?

System call

- CPU executing user code can invoke
the OS functions using system calls

OS

Process
code

 CPU

 OS code

System call

- CPU executing user code can invoke
the OS functions using system calls

- The CPU executes the OS handler
for the system call

OS

Process
code

 CPU

 OS code

System call

- CPU executing user code can invoke
the OS functions using system calls

- The CPU executes the OS handler
for the system call

- How system call is different from a
function call?

OS

Process
code

 CPU

 OS code

System call

- CPU executing user code can invoke
the OS functions using system calls

- The CPU executes the OS handler for
the system call

- How is system call different from a
function call?

- Can be thought as an invocation of
privileged functions (will revisit)

OS

Process
code

 CPU

 OS code

System calls and user libraries

 Applications

 Library API

 printf()

 Operating System

write()

 Monitor/Console

dev_write()

- Most system calls are invoked
through wrapper library functions

- However, all system calls can be
invoked directly

- For example, in Linux systems,
syscall() wrapper can be used
(Refer: man syscall)

A simple system call: getpid()

pid_t getpid()
{
 PCB *current = get_current_process();
 return (current → pid);
}

main()
{
 printf(“%d\n”, getpid());
}

OS
USER

Process creation: What and How?

- How does OS come into action after typing “./a.out” in a shell?
- System calls invoked to explicitly give control to the OS
- What exact system calls are invoked?
- Who invokes the system calls?
- Where is the genesis? What is the first user process?

Process creation - fork()

- fork() system call is weird; not a typical “privileged” function call
- fork() creates a new process; a duplicate of calling process
- On success, fork

- Returns PID of child process to the caller (parent)
- Returns 0 to the child

Parent Process

Parent Process

Child Process

fork()

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Copy
process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute? PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute?
- When OS schedules the

child process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

 OS
scheduler

Child Process

ret = 0

- PC is next instruction after
fork() syscall, for both parent
and child

- Child memory is an exact
copy of parent

- Parent and child diverge
from this point PCB (parent)

CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Load a new binary - exec()

- Replace the calling process by a new executable
- Code, data etc. are replaced by the new process
- Usually, open files remain open

Process (1. exe) Process (2.exe)exec (2.exe)

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

 PCB (1.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 1.exe

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same

cleanup
Load 2.exe
from disk

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

return (0)

 PCB (2.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 2.exe

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same
- On return, new executable starts

execution
- PC is loaded with the starting address of

the newly loaded binary

Process creation: What and How?

- How does OS come into action after typing “./a.out” in a shell?
- System calls invoked to explicitly give control to the OS
- What exact system calls are invoked?
- fork(), exec (), wait() and exit()
- Who invokes the system calls? In what order?
-
- Where is the genesis? What is the first user process?

wait() and exit()
Parent

Child

fork()

Parent

- The wait system call
makes the parent wait
for child process to
exit

wait()

wait() and exit()
Parent

Child

fork()

Parent

- The wait system call
makes the parent wait
for child process to
exit

- On child exit(), the
wait() system call
returns in parent

wait() exit()

Shell command line: fork + exec + wait
BASH

BASH

fork()

BASH

- The BASH process
calls fork()

Shell command line: fork + exec + wait
BASH

BASH

fork()

BASH

exec (“a.out”)

Child Process (a.out)

wait()

- Parent process calls
wait() to wait for child
to finish

- Child process invokes
exec()

Shell command line: fork + exec + wait
BASH

BASH

fork()

BASH

exec (“a.out”)

Child Process (a.out)

wait()

exit()

- When child exits,
parent gets notified

- The BASH shell is
ready for the next
command at this point
of time

Process creation: What and How?

- How does OS come into action after typing “./a.out” in a shell?
- System calls invoked to explicitly give control to the OS
- What exact system calls are invoked?
- fork(), exec (), wait() and exit()
- Who invokes the system calls? In what order?
- The shell process (bash process)
- What is the first user process?

Unix process family using fork + exec
Parent Process (init)

Child Process (init)

fork()

Parent Process (init)

exec (/bin/sh)

Child Process (sh)

- Fork and exec are used
to create the process
tree

- Commands: ps, pstree
- See the /proc directory

in linux systems

Process creation: What and How?

- How does OS come into action after typing “./a.out” in a shell?
- System calls invoked to explicitly give control to the OS
- What exact system calls are invoked?
- fork(), exec (), wait() and exit()
- Who invokes the system calls?
- The shell process (bash process)
- What is the first user process?
- In Unix systems, it is called the init process
- Who creates and schedules the init process?

