CS330: Operating Systems

Virtual memory: Paging

Recap: Segmentation 5

O Code segment
Code Base = 28KB _ Extension of the
[1 e v | 2.0
1KB Limic = TR0 scheme for
Data segment .
2.2.KB
Heap YR translation ar
3KB | | Limit = 2KB L SKB address space
| | L OKB granularity
1 | N o .
KB Base-limit register
7KBlmmmmmmmmm - Stack segment pairs per Segment
| Stack ‘ Base = 32KB 32KB
8KB —
Limit = 1KB 48KB

Address space RAM

Recap: Segmentation in reality

DTR

CS

Flags Limit

Base

SS

DS

Flags Limit

Base

CPU

Flags Limit

Base

Descriptor Table

Flags

D

S

|

|

Direction Privilege

(+or-)

w

|
Read
Write
Execute

- Descriptor table register (DTR) is used to access the descriptor table

- # of descriptors depends on architecture
- Separate descriptors used for user and kernel mode

Recap: Segmentation in reality

DTR

CS

Flags

Limit

Base

SS

DS

Flags

Limit

Base

CPU

Flags

Limit

Base

Descriptor Table

Flags

D

S

|

|

Direction Privilege

(+or-)

Wil X

|
Read
Write
Execute

- 0n1: Can the OS address space be organized as split-mode addressing?
- 0Qn2: When OS uses a separate address space, how to access user addresses?

Paging

- Paging addresses the following issues with segmentation
- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping

Paging

- Paging addresses the following issues with segmentation
- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping
- The idea of paging
- Partition the address space into fixed sized blocks (call it page)
- Physical memory partitioned in a similar way (call it page frame)

Paging

- Paging addresses the following issues with segmentation
- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping
- The idea of paging
- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- 0OS creates a mapping between page to page frame
- H/W uses the mapping to translate VA to PA

Paging example (pages)

@)
| 0
256 age
Page1l
512
P 2
768 age
Page 3
1024
Page 125
Page 126
Page 127
32KB

Process address

space

- Virtual address size = 32KB, Page size = 256 bytes
- Address length = 15 bits {Ox0 - Ox/FFF}

of pages = 128

Paging example (pages)

@)
| 0
256 age
Page1l
512
P 2
768 age
Page 3
1024
Page 125
Page 126
Page 127
32KB

Process address

space

- Virtual address size = 32KB, Page size = 256 bytes
- Address length = 15 bits {Ox0 - Ox/FFF}

of pages = 128

7 bits 8 bits
\ \
\ \
Page number Offset

Virtual address

- Example: For Virtual address 0x0510, Page

number =5, offset = 16

Paging example (page frames)

@)
| 0
256 age
Page1l
512
P 2
768 age
Page 3
1024
Page 125
Page 126
Page 127
32KB

Process address

space

Physical address size = 64KB

- Address length = 16 bits {0x0 -

OXFFFF}
of page frames = 256

PFN O

PFN1

PFN 2

PFN 3

PFN 253

PFN 254

PFN 255

DRAM

256
512
768
1024

64KB

Paging example (page frames)

@)
| 0
256 age
Page1l
512
P 2
768 age
Page 3
1024
Page 125
Page 126
Page 127
32KB

Process address

- Example: For physical address Ox1F51, PEN = 31, offset = 81

space

Physical address size = 64KB

- Address length = 16 bits {0x0 -

OXFFFF}

of page frames = 256
8 bits 8 bits

A A

PFN O

PFN1

PFN 2

PFN 3

PFN 253

PFN Offset

PFN 254

Physical address

PFN 255

DRAM

256
512
768
1024

64KB

Paging example (page table mapping)

@)

o Page table _ PEN 0 256
256 Page 0 1 PFEN 1 o2
512 Page1l - PEN 2 68
763 Page 2 2 PFN 3 o2

102 Page3 4 PFN 4 128?;

4 — 12.8 entries

PFN 253
Page 125 - PEN 254
Page 126 3 _ PFN 255 KB
Page 127 DRAM 64
32KB

process address~ £ACN entry in page table is called page table entry (PTE)
PE - Example mapping: page 0 = PFN 1, page 2 = PFN 2
and so on

Paging example (page table walk)

PTW (vaddr V, PTable P)
// Input: Virtual address, Page table
/| Returns physical address
{
Entry = P[V >> 8];
if (Entry.present)
return (Entry.PEN << 8) + (V & oxFE);
Raise PageFault;

}

Paging example (example translation)

O
o Page table PEN 0 256
256 Page 0 1 PFEN 1 o2
512 Page1l X — PEN 2 63
Page 2 2 7
768 / PFN 3 1024
Page 3 4 PEN &
1024 1280
PFN 253
Page 125 - PEN 254
Page 127 DRAM 64
32KB

process address~ Virtual address 0x10 translates to physical address 0x110

P - Virtual address 0x7FFO translates to physical address
Ox3F0

Paging example (page table walk)

- Where is the page table stored?
- What is the structure of the PTE?
- What is the maximum physical memory size supported?

Paging example (page table walk)

- Where is the page table stored?

- Page table is stored in RAM. Page table base register (CR3 in
X86) contains the address

- What is the structure of the PTE?

- What is the maximum physical memory size supported?

Paging example (structure of an example PTE)

8 bits
A

[

]

PFN

A

S

W

P

—OE

PEN occupies a significant portion of PTE entry (8 bits in this example)

P

W

S

Present bit, 1= entry is valid
Write bit, 1= Write allowed

Privilege bit, 0= only kernel mode access is allowed

Accessed bit, 1= Address accessed (set by H/W during walk)
Dirty bit, 1= Address written (set by H/W during walk)

Execute bit, 1= Instruction fetch allowed for this page

Reserved/unused bits

Paging example (Page table entries)

O
o Page table PEN O 256
256 Page 0 0x125 PEN 1 >
Page1l 0x0 PFN 2 >
768 Page 2 0x207 PFN 3 1024
Page 3 0x407
1024 £ PFN 4 1280
0x0
PFN 253
Page 125 0x0 PEN 254
Page 126 0x307 PFN 255 64KB
Page 127 DRAM
32KB

process address~ c0de: Page 0 (Read and Execute)
"P%® - Data: Page 2 and Page 3 (Read and Write)
- Stack: Page 127 (Read and Write)

Paging example (page table walk)

- Where is the page table stored?

- Page table is stored in RAM. Page table base register (CR3 in
X86) contains the address

- What is the structure of the PTE?

- Apart from the PFN, it contains access permissions and flags

- What is the maximum physical memory size supported?

Paging example (page table walk)

- Where is the page table stored?

- Page table is stored in RAM. Page table base register (CR3 in
X86) contains the address

- What is the structure of the PTE?

- Apart from the PFN, it contains access permissions and flags

- What is the maximum physical memory size supported?

- For this example, 8-bits can be used to specify 256 page
frames. Maximum RAM size = 256 * 256 = 64KB

Paging: one level of page table may not be feasible!

- Consider a 32-bit address space (=4GB)
- What should be the page size for this system?

Paging: one level of page table may not be feasible!

- Consider a 32-bit address space (=4GB)

- What should be the page size for this system?

- Large page size results in internal fragmentation

- Assuming page size = 4KB, How many entries are required in a
one-level paging system?

Paging: one level of page table may not be feasible!

- Consider a 32-bit address space (=4GB)

- What should be the page size for this system?

- Large page size results in internal fragmentation

- Assuming page size = 4KB, How many entries are required in a
one-level paging system? (2% entries)

- Not possible to hold 22 entries in a single page

- Therefore, multi-level page tables are used in modern systems

Two-level page tables (32-bit virtual address)

Virtual Address
10 bits 10 bits 12 bits
Page offset -
L1-offset L2-offset
L2 entry PFN | |Physical |
frame (4K)

CR3

Two-level page table

Level-1 page table contains
entries pointing to Level-2 page
table structures

Level-2 entry contains PFN along
with flags

