
CS330: Operating Systems

Virtual memory: Paging

Recap: Segmentation

Code

Stack

Heap

Address space RAM

0

1KB
20KB

28KB

29KB

48KB

3KB

8KB

7KB

 Base = 28KB

Limit = 1KB

Code segment

 Base = 20KB

Limit = 2KB

Data segment

 Base = 32KB

Limit = 1KB

Stack segment

22KB

0

32KB

31KB

- Extension of the
scheme for
translation ar
address space
granularity

- Base-limit register
pairs per segment

Recap: Segmentation in reality

- Descriptor table register (DTR) is used to access the descriptor table
- # of descriptors depends on architecture
- Separate descriptors used for user and kernel mode

Flags Limit

Base D S R W X

Direction
(+ or -)

Flags

Privilege
Read
Write
Execute

CPU

CS

SS

DS

Flags Limit

Base

Flags Limit

Base

Descriptor Table

DTR

Recap: Segmentation in reality

- Qn1: Can the OS address space be organized as split-mode addressing?
- Qn2: When OS uses a separate address space, how to access user addresses?

Flags Limit

Base D S R W X

Direction
(+ or -)

Flags

Privilege
Read
Write
Execute

CPU

CS

SS

DS

Flags Limit

Base

Flags Limit

Base

Descriptor Table

DTR

Paging
- Paging addresses the following issues with segmentation

- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping

Paging
- Paging addresses the following issues with segmentation

- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping

- The idea of paging
- Partition the address space into fixed sized blocks (call it page)
- Physical memory partitioned in a similar way (call it page frame)

Paging
- Paging addresses the following issues with segmentation

- External fragmentation caused due to variable sized segments
- No support for discontinuous/sparse mapping

- The idea of paging
- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- OS creates a mapping between page to page frame
- H/W uses the mapping to translate VA to PA

Paging example (pages)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

- Virtual address size = 32KB, Page size = 256 bytes
- Address length = 15 bits {0x0 - 0x7FFF}
- # of pages = 128

Paging example (pages)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

Page number Offset

 Virtual address

7 bits 8 bits

- Example: For Virtual address 0x0510, Page
number = 5, offset = 16

- Virtual address size = 32KB, Page size = 256 bytes
- Address length = 15 bits {0x0 - 0x7FFF}
- # of pages = 128

Paging example (page frames)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

- Physical address size = 64KB
- Address length = 16 bits {0x0 -

0xFFFF}
- # of page frames = 256

Paging example (page frames)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

- Physical address size = 64KB
- Address length = 16 bits {0x0 -

0xFFFF}
- # of page frames = 256

 PFN Offset

 Physical address

8 bits 8 bits

- Example: For physical address 0x1F51, PFN = 31, offset = 81

Paging example (page table mapping)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4 PFN 4 1280
-

-

3

128 entries

- Each entry in page table is called page table entry (PTE)
- Example mapping: page 0 ⇒ PFN 1, page 2 ⇒ PFN 2

and so on

Paging example (page table walk)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4

PFN 4 1280-

-

3

128 entries

PTW (vaddr V, PTable P)
// Input: Virtual address, Page table
// Returns physical address
{
 Entry = P[V >> 8];
 if (Entry.present)
 return (Entry.PFN << 8) + (V & 0xFF);
 Raise PageFault;
}

Paging example (example translation)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4 PFN 4 1280
-

-

3

- Virtual address 0x10 translates to physical address 0x110
- Virtual address 0x7FF0 translates to physical address

0x3F0

Paging example (page table walk)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4

PFN 4 1280-

-

3

128 entries

- Where is the page table stored?
- What is the structure of the PTE?
- What is the maximum physical memory size supported?

Paging example (page table walk)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4

PFN 4 1280-

-

3

128 entries

- Where is the page table stored?
- Page table is stored in RAM. Page table base register (CR3 in

X86) contains the address
- What is the structure of the PTE?
- What is the maximum physical memory size supported?

Paging example (structure of an example PTE)

PFN X D W PA S

- PFN occupies a significant portion of PTE entry (8 bits in this example)
P Present bit, 1 ⇒ entry is valid

W Write bit, 1 ⇒ Write allowed

S Privilege bit, 0 ⇒ only kernel mode access is allowed

A Accessed bit, 1 ⇒ Address accessed (set by H/W during walk)

D Dirty bit, 1 ⇒ Address written (set by H/W during walk)

X Execute bit, 1 ⇒ Instruction fetch allowed for this page

8 bits

Reserved/unused bits

Paging example (Page table entries)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

0x125

0x0

0x207

Page table

0x407 PFN 4 1280
0x0

0x0

0x307

- Code: Page 0 (Read and Execute)
- Data: Page 2 and Page 3 (Read and Write)
- Stack: Page 127 (Read and Write)

Paging example (page table walk)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4

PFN 4 1280-

-

3

128 entries

- Where is the page table stored?
- Page table is stored in RAM. Page table base register (CR3 in

X86) contains the address
- What is the structure of the PTE?
- Apart from the PFN, it contains access permissions and flags
- What is the maximum physical memory size supported?

Paging example (page table walk)
Page 0

 Process address
space

0
256

32KB

Page 1512
Page 2768
Page 31024

Page 125

Page 126

Page 127

PFN 0

DRAM

0
256

64KB

PFN 1 512
PFN 2 768
PFN 3 1024

PFN 253

PFN 254

PFN 255

1

-

2

Page table

4

PFN 4 1280-

-

3

128 entries

- Where is the page table stored?
- Page table is stored in RAM. Page table base register (CR3 in

X86) contains the address
- What is the structure of the PTE?
- Apart from the PFN, it contains access permissions and flags
- What is the maximum physical memory size supported?
- For this example, 8-bits can be used to specify 256 page

frames. Maximum RAM size = 256 * 256 = 64KB

- Consider a 32-bit address space (=4GB)
- What should be the page size for this system?

Paging: one level of page table may not be feasible!

- Consider a 32-bit address space (=4GB)
- What should be the page size for this system?
- Large page size results in internal fragmentation
- Assuming page size = 4KB, How many entries are required in a

one-level paging system?

Paging: one level of page table may not be feasible!

Paging: one level of page table may not be feasible!

- Consider a 32-bit address space (=4GB)
- What should be the page size for this system?
- Large page size results in internal fragmentation
- Assuming page size = 4KB, How many entries are required in a

one-level paging system? (220 entries)
- Not possible to hold 220 entries in a single page
- Therefore, multi-level page tables are used in modern systems

Two-level page tables (32-bit virtual address)

CR3

 10 bits 10 bits 12 bits

 L1-offset

 PFN

L2-offset

Physical
frame (4K)

Page offset

 L2 entry

Virtual Address

- Two-level page table
- Level-1 page table contains

entries pointing to Level-2 page
table structures

- Level-2 entry contains PFN along
with flags

