
CS330: Operating Systems

Virtual memory: Multilevel paging and TLB

Recap: Paging
- The idea of paging

- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- OS creates a mapping between page to page frame , H/W uses the

mapping to translate VA to PA
- With increased address space size, single level page table entry is not

feasible, because
- Increasing page size (= frame size) increases internal fragmentation
- Small pages may not be suitable to hold all mapping entries

Agenda: Multi-level pages tables and their efficiency implications

4-level page tables: 48-bit VA (Intel x86_64)

CR3

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t Physical
frame (4K)

- Virtual address size = 248, Page size = PF size = 4KB
- Four-levels of page table, entry size = 64 bits

4-level page tables: example translation

000000001000000000001000000000000000110000000000

0x2007000

 9 bits 9 bits 9 bits 9 bits 12 bits

0x2008027
0x200B027

- Virtual address = 0x180001008
- Hardware translation by repeated access of page table stored in

physical memory
- Page table entry: 12 bits LSB is used for access flags

0x2007000

CR3

0x2008000

0th

6th

0x200B000

0th 0x200C027 0x640E007

0x200C000

1st

0x640E000

Data PFN

User data
0x640E008

Page Table: OS and hardware (MMU)
- The OS

- Maintains (create, modify, delete) page table mapping for all processes
with separate page tables; points CR3 register to the page table of the
currently running process

- Handles virtual to physical allocation/deallocation requests
- Can be when handling page faults or user allocation requests

- The hardware (MMU)
- Walks the page table to perform address translation
- Raise page fault when it can not translate because of invalid

mapping, lack of permissions etc.

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, -8(%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, -8(%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, (%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

- Instruction execution: Loop = 10 * 6, Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access: Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? Assume stack address range

0x7FFF000 - 0x8000000

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, (%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

- Instruction execution: Loop = 10 * 6, Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access: Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? Assume stack address range

0x7FFF000 - 0x8000000
- One code page (0x20) and one stack page (0x7FFF). Caching these

translations, will save a lot of memory accesses.

Paging with TLB: translation efficiency

- TLB is a hardware cache to store Page to PFN mapping (with access flags)
- For code, after first miss for instruction fetch, all accesses hit the TLB
- Similarly, considering the stack virtual address range as 0x7FFF000 -

0x8000000, one entry in TLB avoids page table walk after first miss

Page PTE

0x20 0x750

0x7FFF 0x890

TLB

Paging with TLB: translation efficiency

- TLB is a hardware cache to store Page to PFN mapping (with access flags)
- After first miss for instruction fetch address, all others result in a TLB hit
- Similarly, considering the stack virtual address range as 0x7FFF000 -

0x8000000, one entry in TLB avoids page table walk after first miss

Page PTE

0x20 0x750

0x7FFF 0x890

TLB
Translate(V){
 PageAddress P = V >> 12;
 TLBEntry entry = lookup(P);
 if (entry.valid) return entry.pte;
 entry = PageTableWalk(V);
 MakeEntry(entry);
 return entry.pte;
}

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Why page fault is necessary?
- How OS handles the page fault?

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Process B may be using the same addresses used by
A. Result: Wrong translation

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Correctness ensured. Performance is an issue (with
frequent context switching)

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Address space identified (ASID) along with each TLB
entry to identify the process

Page PTE
0x100 ox200007
0x101
0x100 0x301007
0x101

TLB

Process (A) Process (B)

ox205007

ASID
A
A
B
B 0x302007

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- How OS handles the page fault?

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy

allocation and swapping
- How OS handles the page fault?

Page fault handling in X86: Hardware

If(!pte.valid ||
 (access == write && !pte.write) ||
 (cpl != 0 && pte.priv == 0)){
 CR2 = Address;
 errorCode = pte.valid
 | access << 1
 | cpl << 2;
 Raise pageFault;
} // Simplified

Page fault handling in X86: Hardware

If(!pte.valid ||
 (access == write && !pte.write) ||
 (cpl != 0 && pte.priv == 0)){
 CR2 = Address;
 errorCode = pte.valid
 | access << 1
 | cpl << 2;
 Raise pageFault;
} // Simplified

I W PR U

P Present bit, 1 ⇒ fault is due to protection

W Write bit, 1 ⇒ Access is write

U Privilege bit, 1 ⇒ Access is from user mode

R Reserved bit, 1 ⇒ Reserved bit violation

I Fetch bit, 1 ⇒ Access is Instruction Fetch

Other and unused

Error code

- Error code is pushed into the kernel stack by the hardware (X86)

Page fault handling in X86: OS fault handler

HandlePageFault(u64 address, u64 error_code)
{
 If (AddressExists(current → mm_state, address) &&
 AccessPermitted(current → mm_state, error_code) {
 PFN = allocate_pfn();
 install_pte(address, PFN);
 return;
 }
 RaiseSignal(SIGSEGV);
}

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy

allocation and swapping
- How OS handles the page fault?
- The hardware invokes the page fault handler by placing the error code

and virtual address. The OS handles the page fault either fixing it or
raising a SEGFAULT.

