
CS330: Operating Systems

Virtual memory: Page fault and Swapping

Recap: Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy

allocation and swapping
- How OS handles the page fault?
- The hardware invokes the page fault handler by placing the error code and

virtual address. The OS handles the page fault either fixing it or raising a
SEGFAULT.

Swapping (swap-out)

OS

Number of free PFNs are
very few in the system. I can
not break my promise made
to the applications. Let me
swap-out some memory. But
which one to swap-out?

DRAM

Swap (Hard disk)
AllocatePFN()

Swapping (swap-out)

OS

My page replacement policy
will help me deciding the
victims (V). Can I just
swap-out? What if the
swapped-out pages are
accessed? I should be
prepared for that too!

DRAM

Swap (Hard disk)

V

Page Replacement Policy

AllocatePFN()

Swapping (swap-out)

OS

Update the present-bit to 0 in
the PTE such that any access to
the page through the virtual
address will result in a page
fault. Also maintain the swap
address in the PTE.

DRAM

Swap (Hard disk)

V

AllocatePFN()

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0

PTE mapping the victim PFN (after swap)

V

S

Swapping (swap-out)

OS

Content of the PFN is now in
the swap device. In future, any
translation using the PTE will
result in a page fault. The page
fault handler would copy it
back from the swap device.

DRAM

Swap (Hard disk)
AllocatePFN()

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

PTE mapping the victim PFN (after swap)

V

SwapAddress(V) 0S

Page fault: Swap-in procedure (simplified)

HandlePageFault(u64 address, u64 error_code)
{
 If (AddressExists(current → mm_state, address) &&
 AccessPermitted(current → mm_state, error_code) {
 PFN = allocate_pfn();
 If (is_swapped_pte(address)) // Check if the PTE is swapped out
 swapin(getPTE(address), PFN); // Copy the swap block to PFN
 install_pte(address, PFN); // and update the PTE
 return;
 }
 RaiseSignal(SIGSEGV);
}

Page replacement

- Objective: minimize number of page faults (due to swapping)
- We can model this problem with three parameters

- A given sequence of access to virtual pages
- # of memory pages (Frames)
- Page replacement policy

- Metrics to measure the effectiveness: # of page faults, page fault rate,
average memory access time

Belady’s optimal algorithm (MIN)

- Strategy: Replace the page that will be referenced after the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = ?

Belady’s optimal algorithm (MIN)

- Strategy: Replace the page that will be referenced after the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = 6 (3 cold-start misses result in page faults, no swapping)
- Belady’s MIN is proven to be optimal, but impractical as it requires

knowledge of future access

First In First Out (FIFO)
- Strategy: Replace the page that is in memory for the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = ?

First In First Out (FIFO)
- Strategy: Replace the page that is in memory for the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = 8 (3 cold-start misses)
- FIFO suffers from an anomaly known as Belady’s anomaly

- With increased #of frames, #of page fault may also increase!

First In First Out (FIFO)
- Strategy: Replace the page that is in memory for the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = 8 (3 cold-start misses)
- FIFO suffers from an anomaly known as Belady’s anomaly

- With increased #of frames, #of page fault may also increase!
- Example access sequence: 0, 1, 2, 3, 0, 1, 4, 0, 1, 2, 3, 4
- #of page faults with 3 frames < #of page faults with 4 frames

Least recently used (LRU)
- Strategy: Replace the page that is not referenced for the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = ?

Least recently used (LRU)
- Strategy: Replace the page that is not referenced for the longest time
- Example:

 #of frames = 3
 Reference sequence (in temporal order)
 1, 3, 1, 5, 4, 1, 2, 5, 2, 2, 5, 3

- #of page faults = 7 (3 cold-start)
- LRU shown to be useful for workloads with access locality
- Implementation of LRU using a single accessed-bit may not be practical, can

be approximated using CLOCK (homework)
- Stack property or inclusion property of eviction algorithms

