CS330: Operating Systems

OS mode execution



Recap: Limited direct execution support in X86

- What kind of support is needed from the hardware?
- CPU privilege levels, switching, entry points and handlers
- X86 support
- privilege levels (ring-0 to ring-3)
- Interrupt descriptor table to define handlers for hardware and software
entry points (system calls, interrupts, exceptions)
- entry point behavior can be defined by the OS to enforce limitations on

the user space execution



Recap: Limited direct execution support in X86

- What kind of support is needed from the hardware?
- CPU privilege levels, switching, entry points and handlers
- X86 support
- privilege levels (ring-0 to ring-3)
- Interrupt descriptor table to define handlers for hardware and software
entry points (system calls, interrupts, exceptions)
- entry point behavior can be defined by the OS to enforce limitations on

the user space execution

[Agenda: Execution in privileged (kernel) mode J




Post-boot OS execution

External events a.k.a Kernel mode Software interrupts
Interrupts (INT instructions)

Software caused faults
and exceptions

- 0S execution is triggered because of interrupts, exceptions or system calls



Post-boot OS execution

External events a.k.a Kernel mode Software interrupts

Interrupts ‘ (INT instructions)

Software caused faults
and exceptions

- 0S execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared
for this event to happen. What can go wrong and how to handle it?



Post-boot OS execution

External events a.k.a Kernel mode Software interrupts

Interrupts ‘ (INT instructions)

Software caused faults
and exceptions

- 0S execution is triggered because of interrupts, exceptions or system calls

- Exceptions and interrupts are abrupt, the user process may not be prepared
for this event to happen. What can go wrong and how to handle it?

- The interrupted program may become corrupted after resume! The OS need
to save the user execution state and restore it on return



Post-boot OS execution

- Does the OS need a separate stack?

- How many OS stacks are required?

- How the user process state preserved on entry to OS and restored on return
to user space?

- Which address space the OS uses?



The OS stack

- 0S execution requires a stack for obvious reasons (function call & return)
- (an the OS use the user stacks?



The OS stack

0S execution requires a stack for obvious reasons (function call & return)
Can the OS use the user stacks?
No. Because of security and efficiency reasons,
- The user may have an invalid SP at the time of entry
0S need to erase the used area before returning



The OS stack

0S execution requires a stack for obvious reasons (function call & return)
Can the OS use the user stacks?
No. Because of security and efficiency reasons,
The user may have an invalid SP at the time of entry
0S need to erase the used area before returning
If OS has its own stack, who switches the stack on kernel entry?



The OS stack

- 0S execution requires a stack for obvious reasons (function call & return)
- (an the OS use the user stacks?
- No. Because of security and efficiency reasons,
- The user may have an invalid SP at the time of entry
- 0S need to erase the used area before returning
If OS has its own stack, who switches the stack on kernel entry?
- On X86 systems, the hardware switches the stack pointer to the stack
address configured by the OS



Post-boot OS execution

- Does the OS need a separate stack?
- Yes, the hardware may switch the SP to point it to a configured OS stack

- How many OS stacks are required?

- How the user process state preserved on entry to OS and restored on return
to user space?

- Which address space the OS uses?



Management of OS stacks

- Aper-process OS stack is required to allow multiple processes to be in 0S
mode of execution simultaneously
- Working?



Management of OS stacks

- Aper-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously
- Working
- The OS configures the kernel stack address of the currently executing
process in the hardware
- The hardware switches the stack pointer on system call or exception



Management of OS stacks

- Aper-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously
- Working
- The OS configures the kernel stack address of the currently executing
process in the hardware
- The hardware switches the stack pointer on system call or exception
- What about external interrupts?



Management of OS stacks

- Aper-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working

- The OS configures the kernel stack address of the currently executing

process in the hardware

- The hardware switches the stack pointer on system call or exception
- What about external interrupts?

- Separate interrupt stacks are used by OS for handling interrupts



Post-boot OS execution

- Does the OS need a separate stack?

- Yes, the hardware may switch the SP to point it to a configured OS stack

- How many OS stacks are required?

- For every process, a kernel stack is required

- How is the user process state preserved on entry to OS and restored on
return to user space?

- Which address space the OS uses?



User-kernel context switch

Process
(user mode)

Execution state represents
the state of registers
including the SP,PC

—

\

Execution state

Kernel stack

Kernel stack ADDR

Entry Gates (IDTR)

4

- The OS configures the kernel stack of the process before scheduling the
process on the CPU



User-kernel context switch

Interrupt/system call

Process

(user mode)
Execution state
Kernel stack ADDR
K 1 k
ernel stac Entry Gates (IDTR)
CPU
Execution state (U) Event handler

The CPU saves the execution state onto the kernel stack
The OS handler finds the SP switched with user state saved (fully or
partially depending on architectures)



User-kernel context switch

Process

(user mode)
Execution state
Kernel stack ADDR
Kernel stack
Entry Gates (IDTR)
CPU
Execution state (U) Event handler

The OS executes the event (syscall/interrupt) handler
Makes uses of the kernel stack
Execution state on CPU is of OS at this point



User-kernel context switch

Process
(user mode) !

Return to user Execution state

Kernel stack ADDR

05/
Kernel stack y Entry Gates (IDTR)

CPU
Execution state (U)

- The kernel stack pointer should point to the position at the time of entry
- (CPU loads the user execution state and resumes user execution



Post-boot OS execution

- Does the OS need a separate stack?

- Yes, the hardware may switch the SP to point it to a configured OS stack

- How many OS stacks are required?

- For every process, a kernel stack is required

- How the user process state preserved on entry to OS and restored on return
to user space?

- The user execution state is saved/restored using the kernel stack by the
hardware (and 0S)

- Which address space the OS uses?



The OS address space

Code

Data

Not only | have to enable
address space for each process,
| need an address space myself

which is protected from the
05 user processes. Design?




The OS address space

Code Not only | have to enable

Data address space for each process,
_____ Heap _ __ . | need an address space myself
. . ! which is protected from the
1 ree ! 5
: : 05 user processes. Design?

Stack

- Two possible design approaches
- Use a separate address space for the OS, change the translation
information on every OS entry (inefficient)
- Consume a part of the address space from all processes and protect
the OS addresses using H/W assistance (most commonly used)




Post-boot OS execution

- Does the OS need a separate stack?

- Yes, the hardware may switch the SP to point it to a configured OS stack

- How many OS stacks are required?

- For every process, a kernel stack is required

- How the user process state preserved on entry to OS and restored on return
to user space?

- The user execution state is saved/restored using the kernel stack by the
hardware (and 0S)

- Which address space the OS uses?

- Apart of the process address space is reserved for OS and is protected



