
CS330: Operating Systems

OS mode execution

Recap: Limited direct execution support in X86
- What kind of support is needed from the hardware?
- CPU privilege levels, switching, entry points and handlers
- X86 support

- privilege levels (ring-0 to ring-3)
- interrupt descriptor table to define handlers for hardware and software

entry points (system calls, interrupts, exceptions)
- entry point behavior can be defined by the OS to enforce limitations on

the user space execution

Recap: Limited direct execution support in X86
- What kind of support is needed from the hardware?
- CPU privilege levels, switching, entry points and handlers
- X86 support

- privilege levels (ring-0 to ring-3)
- interrupt descriptor table to define handlers for hardware and software

entry points (system calls, interrupts, exceptions)
- entry point behavior can be defined by the OS to enforce limitations on

the user space execution

Agenda: Execution in privileged (kernel) mode

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- How many OS stacks are required?
- How the user process state preserved on entry to OS and restored on return

to user space?
- Which address space the OS uses?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?
- On X86 systems, the hardware switches the stack pointer to the stack

address configured by the OS

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware may switch the SP to point it to a configured OS stack
- How many OS stacks are required?
- How the user process state preserved on entry to OS and restored on return

to user space?
- Which address space the OS uses?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

- What about external interrupts?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

- What about external interrupts?
- Separate interrupt stacks are used by OS for handling interrupts

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware may switch the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How is the user process state preserved on entry to OS and restored on

return to user space?
- Which address space the OS uses?

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS configures the kernel stack of the process before scheduling the
process on the CPU

Execution state represents
the state of registers
including the SP, PC

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The CPU saves the execution state onto the kernel stack
- The OS handler finds the SP switched with user state saved (fully or

partially depending on architectures)

Interrupt/system call

 Execution state (U)

SP

Event handler

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS executes the event (syscall/interrupt) handler
- Makes uses of the kernel stack
- Execution state on CPU is of OS at this point

 Execution state (U)

SP

Event handler

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

- The kernel stack pointer should point to the position at the time of entry
- CPU loads the user execution state and resumes user execution

 Execution state (U)

SP

Return to user Execution state

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware may switch the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How the user process state preserved on entry to OS and restored on return

to user space?
- The user execution state is saved/restored using the kernel stack by the

hardware (and OS)
- Which address space the OS uses?

The OS address space
Code
Data

Stack

Heap

Free OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

The OS address space
Code
Data

Stack

Heap

Free

- Two possible design approaches
- Use a separate address space for the OS, change the translation

information on every OS entry (inefficient)
- Consume a part of the address space from all processes and protect

the OS addresses using H/W assistance (most commonly used)

OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware may switch the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How the user process state preserved on entry to OS and restored on return

to user space?
- The user execution state is saved/restored using the kernel stack by the

hardware (and OS)
- Which address space the OS uses?
- A part of the process address space is reserved for OS and is protected

