
CS330: Operating Systems

Limited direct execution

Recap: virtual view of resources
- Process

- Each running process thinks that it owns the CPU

Recap: virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space

Recap: virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly

Recap: virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly
- What are the OS responsibilities in providing the above virtual notions?

Recap: virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly
- What are the OS responsibilities in providing the above virtual notions?

- The OS performs multiplexing of physical resources efficiently
- Maintains mapping of virtual view to physical resource

Resource Multiplexing: Efficiency/performance

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, no OS mediation

- Example: when a process is scheduled on a CPU, it should execute
without OS intervention

- What is the catch?

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, no OS mediation

- Example: when a process is scheduled on a CPU, it should execute
without OS intervention

- What is the catch?
- Loss of control e.g., process running an infinite loop on a CPU
- Isolation issues e.g., process accessing/changing OS data structures

Resource Multiplexing: Efficiency/performance

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, no OS mediation

- Example: when a process is scheduled on a CPU, it should execute
without OS intervention

- What is the catch?
- Loss of control e.g., process running an infinite loop on a CPU
- Isolation issues e.g., process accessing/changing OS data structures

Conclusion: Some limits to direct access must be enforced.

Resource Multiplexing: Efficiency/performance

Limited direct execution

- Can the OS enforce limits to an executing process by itself?

A process in execution

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

OS

 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

I want to take control of the
CPU from this process which is
executing an infinite loop, but
how?

I want to restrict this process
accessing memory of other
processes, but how?
Monitoring each memory
access is not efficient!

A process in execution

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

OS

 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

I want to take control of the
CPU from this process which is
executing an infinite loop, but
how?

I want to restrict this process
accessing memory of other
processes, but how?
Monitoring each memory
access is not efficient!

Help me!

Limited direct execution

- Can the OS enforce limits to an executing process by itself?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!

Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Help me!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!Cool! Tell me more about it!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!Cool! Tell me more about it!

- CPU can execute in two modes: user-mode and kernel-mode
- Some operations are allowed only from kernel-mode (privileged OPs)

- If executed from user mode, hardware will notify the OS by raising a
fault/trap

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Good. I will run the user
process in user-mode. Hang
on! The user process
requires to invoke my
services. How can the user
change the mode?

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Good. I will run the user
process in user-mode. Hang
on! The user process
requires to invoke my
services. How can the user
change the mode?

- From user-mode, privilege level of CPU can not be changed directly
- The hardware provides entry instructions from the user-mode which

causes a mode switch
- The OS can define the handler for different entry gates

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Okay. You said that if the
process does some mischief
from the user mode, you
will notify me. That means, I
can define handlers for
faults and exceptions too.

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Okay. You said that if the
process does some mischief
from the user mode, you
will notify me. That means, I
can define handlers for
faults and exceptions too.

- The OS can register the handlers for faults and exceptions
- The OS can also register handlers for device interrupts
- Registration of handlers is privileged!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

- After the boot, the OS needs to configure the handlers for system calls,
exceptions/faults and interrupts

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

- After the boot, the OS needs to configure the handlers for system calls,
exceptions/faults and interrupts

- The handler code is invoked by the OS when user-mode process invokes
a system call or an exception or an external interrupt

Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?
- CPU privilege levels: user-mode vs. kernel-mode
- Switching between modes, entry points and handlers

