
CS330: Operating Systems

Virtual memory: Memory API



Recap: Process address space
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- Address space presents the same view of 
memory to all processes

- Address space is virtual 
- OS enables this virtual view



Recap: Process address space
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- Address space represents memory state of 
a process 

- Address space layout is the same for all 
the processes

- Exact layout can be decided by the OS, 
conventional layout is shown 

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS to perform memory virtualization i.e., 

translate virtual address to physical address  (will revisit) 
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- Creating address space, loading binary, updating the PCB register state
- What is the role of OS in dynamic memory allocation?
- Maintain the address space and enforce access permissions   
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….. 

- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- How can we know about the segment layout at program load and runtime?
- How to allocate memory chunks with different permissions?
- What is the structure of PCB memory state? 



Dynamically sizing the segments (UNIX)
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Dynamically sizing the segments (UNIX)
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- Code segment size and initialized data 
segment size is fixed (at exe load)

- End of uninitialized data segment (a.k.a. 
BSS) can be adjusted dynamically

- Heap allocation can be discontinuous, 
special system calls like mmap( ) provide 
the facility

- Stack grows automatically based on the 
run-time requirements, no explicit system 
calls

Data (uninitialized)



Sliding the BSS (brk, sbrk) 

int brk(void *address);

- If possible, set the end of uninitialized data segment at address 
- Can be used by C library to allocate/free memory dynamically 

void * sbrk (long size);

- Increments the program’s data space by size bytes and returns the old value 
of the end of bss  

- sbrk(0)  returns the current location of BSS



Finding the segments

- etext, edata and end variables mark the end of text segment, initialized data 
segment and the BSS, respectively (At program load)

- sbrk(0) can be used to find the end of the data segment
- Printing the address of functions and variables
- Linux provides the information in /proc/pid/maps



User API for memory management 
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- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- What is the structure of PCB memory state? 



Discontiguous allocation (mmap)

- mmap( ) is a powerful and multipurpose system call to perform dynamic and 
discontiguous allocation (explicit OS support)

- Allows to allocate address space 
- with different protections (READ/WRITE/EXECUTE)
- at a particular address provided by the user

- Example: Allocate 4096 bytes with READ+WRITE permission

ptr = mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANONYMOUS 
|MAP_PRIVATE, -1, 0);  // See the man page for details
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- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- mmap( ) supports discontinuous allocation with different permissions
- What is the structure of PCB memory state? 



PCB - Maintained as a sorted 
circular list accessible 
from PCB 

- START and END never 
overlap between two 
segment areas

- Can merge/extend areas if 
permissions match

START - END
READ + EXEC

…

Memory state of PCB (example)
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READ + WRITE

STACK



User API for memory management 
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System calls 
(brk, mmap, ...)

Library API
malloc( )
calloc( ) 
free( )
….. 

- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- mmap( ) supports discontinuous allocation with different permissions
- What is the structure of PCB memory state? 
- A sorted data structure of allocated areas can be used  



Inheriting address space through fork( )
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- Child inherits the memory 
state of the parent

- The memory state 
data structures are 
copied into the child 
PCB

- Any change through 
mmap( ) or brk( ) is 
per-process 



Overriding address space through exec( )
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- The address space is 
reinitialized using the new 
executable

- Changes to newly created 
address space depends on 
the logic of new process


