
CS330: Operating Systems

Virtual memory: Memory API

Recap: Process address space

Code

Data

Stack

Heap

Free

- Address space presents the same view of
memory to all processes

- Address space is virtual
- OS enables this virtual view

Recap: Process address space

Code

Data (Static)

Stack

Heap

Free

- Address space represents memory state of
a process

- Address space layout is the same for all
the processes

- Exact layout can be decided by the OS,
conventional layout is shown

- If all processes have same address space, how they map to actual memory?
- Architecture support used by OS to perform memory virtualization i.e.,

translate virtual address to physical address (will revisit)
- What are the responsibilities of the OS during program load?

- How CPU register state is changed?
- Creating address space, loading binary, updating the PCB register state
- What is the role of OS in dynamic memory allocation?
- Maintain the address space and enforce access permissions

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- How can we know about the segment layout at program load and runtime?
- How to allocate memory chunks with different permissions?
- What is the structure of PCB memory state?

Dynamically sizing the segments (UNIX)

Code

Data (initialized)

Stack

Heap

Free

- Code segment size and initialized data
segment size is fixed (at exe load)

Data (uninitialized)

Dynamically sizing the segments (UNIX)

Code

Data (initialized)

Stack

Heap

Free

- Code segment size and initialized data
segment size is fixed (at exe load)

- End of uninitialized data segment (a.k.a.
BSS) can be adjusted dynamically

Data (uninitialized)

Dynamically sizing the segments (UNIX)

Code

Data (initialized)

Stack

Heap

Free

- Code segment size and initialized data
segment size is fixed (at exe load)

- End of uninitialized data segment (a.k.a.
BSS) can be adjusted dynamically

- Heap allocation can be discontinuous,
special system calls like mmap() provide
the facility

Data (uninitialized)

Dynamically sizing the segments (UNIX)

Code

Data (initialized)

Stack

Heap

Free

- Code segment size and initialized data
segment size is fixed (at exe load)

- End of uninitialized data segment (a.k.a.
BSS) can be adjusted dynamically

- Heap allocation can be discontinuous,
special system calls like mmap() provide
the facility

- Stack grows automatically based on the
run-time requirements, no explicit system
calls

Data (uninitialized)

Sliding the BSS (brk, sbrk)

int brk(void *address);

- If possible, set the end of uninitialized data segment at address
- Can be used by C library to allocate/free memory dynamically

void * sbrk (long size);

- Increments the program’s data space by size bytes and returns the old value
of the end of bss

- sbrk(0) returns the current location of BSS

Finding the segments

- etext, edata and end variables mark the end of text segment, initialized data
segment and the BSS, respectively (At program load)

- sbrk(0) can be used to find the end of the data segment
- Printing the address of functions and variables
- Linux provides the information in /proc/pid/maps

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- What is the structure of PCB memory state?

Discontiguous allocation (mmap)

- mmap() is a powerful and multipurpose system call to perform dynamic and
discontiguous allocation (explicit OS support)

- Allows to allocate address space
- with different protections (READ/WRITE/EXECUTE)
- at a particular address provided by the user

- Example: Allocate 4096 bytes with READ+WRITE permission

ptr = mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANONYMOUS
|MAP_PRIVATE, -1, 0); // See the man page for details

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- mmap() supports discontinuous allocation with different permissions
- What is the structure of PCB memory state?

PCB - Maintained as a sorted
circular list accessible
from PCB

- START and END never
overlap between two
segment areas

- Can merge/extend areas if
permissions match

START - END
READ + EXEC

…

Memory state of PCB (example)

Memory state

CODE

START - END
READ

DATA(RO)

START - END
READ + WRITE

STACK

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls (today’s agenda)

- Can the size of segments change at runtime? If yes, which ones and how?
- Heap and data segments can be adjusted using brk and sbrk
- How can we know about the segment layout at program load and runtime?
- Using predefined variables, sbrk, proc file system (Linux)
- How to allocate memory chunks with different permissions?
- mmap() supports discontinuous allocation with different permissions
- What is the structure of PCB memory state?
- A sorted data structure of allocated areas can be used

Inheriting address space through fork()

PCB(parent)

Code
Data

Stack

Heap

FreeMemory state

fork()

PCB(child)

Code
Data

Stack

Heap

FreeMemory state

- Child inherits the memory
state of the parent

- The memory state
data structures are
copied into the child
PCB

- Any change through
mmap() or brk() is
per-process

Overriding address space through exec()

PCB(old)

Code
Data

Stack

Heap

FreeMemory state

exec(newp)

PCB(new)

Code (newp)
Data (newp)

FreeMemory state

- The address space is
reinitialized using the new
executable

- Changes to newly created
address space depends on
the logic of new process

