
CS330: Operating Systems

Locks



Recap: Synchronization and locking

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Locking is necessary when multiple contexts access shared resources
- Example: Multiple threads, multiple OS execution contexts
- Efficiency of lock and unlock operations 
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock (infinitely)



Recap: Synchronization and locking

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Locking is necessary when multiple contexts access shared resources
- Example: Multiple threads, multiple OS execution contexts
- Efficiency of lock and unlock operations 
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock

Agenda: Spinlocks, Semaphore and mutex (waiting locks) 



Spinlock: Buggy attempt

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }

- Does this implementation work? 
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- Does this implementation work? 
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- Why?

- Single core:  Context switch 
between line #4 and line #5

- Multicore: Two cores exiting the 
while loop by reading lock = 0
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9.    *L = 0;

10. }



Spinlock: Buggy attempt

- Does this implementation work? 
- No, it does not ensure mutual exclusion
- Why?

- Single core:  Context switch 
between line #4 and line #5

- Multicore: Two cores exiting the 
while loop by reading lock = 0

- Core issue:  Compare and swap has to 
happen atomically!

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }



Spinlock using atomic exchange

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(atomic_xchg(L, 1));
5. }
6. unlock(L)
7. {
8.    *L = 0;
9. }

- Atomic exchange: exchange the value of 
memory and register atomically 

- atomic_xchg (int *PTR, int val) returns 
the value at PTR before exchange

- Ensures mutual exclusion if “val” is 
stored on a register

- No fairness guarantees 



Spinlock using XCHG on X86
lock(lock_t *L )
{
    asm volatile(
    “mov $1, %%rax; ”
    “try: xchg %%rax, (%%rdi); ”
    “cmp $0, %%rax;”
     “jne try; ”
      : : : “memory” );
}
unlock(int *L ) { *L = 0;}

- XCHG R, M ⇒ Exchange value of 
register R and value at memory address 
M

- RDI register contains the lock argument 
- Exercise:  Visualize a context switch 

between any two instructions and 
analyse the correctness 



Spinlock using compare and swap

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while( CAS(L, 0, 1) );
5. }
6. unlock(L)
7. {
8.    *L = 0;
9. }

- Atomic compare and swap:  perform the 
condition check and swap atomically

- CAS (int *PTR,  int cmpval, int newval) 
sets the value of PTR to newval if  
cmpval is equal to value at PTR . Returns 
0 on successful exchange

- No fairness guarantees! 



CAS on X86: cmpxchg

cmpxchg   source[Reg]  destination [Mem/Reg]
Implicit registers : rax and flags

1.      if rax == [destination]
2.      then
3.               flags[ZF] = 1
4.               [destination] = source 
5.      else
6.               flags[ZF] = 0
7.              rax = [destination]

- “cmpxchg” is not atomic in 
X86, should be used with a 
“lock” prefix



Spinlock using CMPXCHG on X86
lock(lock_t *L )
{
asm volatile(
      “mov $1, %%rcx;”
      “try: xor %%rax, %%rax;” 
      “lock cmpxchg %%rcx, (%%rdi);”
      “jnz try; ”
      : : : “rcx”,  “rax”, “memory”);
}
unlock(lock_t *L ) { *L = 0;}

- Value of RAX (=0) is compared 
against value at address in register 
RDI and exchanged with RCX (=1), if 
they are equal

- Exercise:  Visualize a context switch 
between any two instructions and 
analyse the correctness 



Load Linked (LL) and Store conditional (SC)

- LoadLinked (R, M)
- Like a normal load, it loads R with value of M
- Additionally, the hardware keeps track of future stores to M

- StoreConditional (R, M)
- Stores the value of R to M if no stores happened to M after the 

execution of LL instruction (after execution, R = 1)
- Otherwise, store is not performed (after execution R=0)

- Supported in RISC architectures like mips, risc-v etc.  



Spinlock using LL and LC

lock_t *L;     //initial value = 0 
lock( lock_t *L)
{
 while(LoadLinked(L) ||
         !StoreConditional(L, 1));
}
unlock( lock_t *L) { *L = 0;}

try:      LL   R1,   (R2);   //R2 = lock address
               BNEQZ  R1,  try;
               ADDUI   R1,   R0, #1;     //R1 = 1
               SC R1, (R2)
               BEQZ R1, try  

- Efficient as the hardware avoids memory traffic for unsuccessful lock 
acquire attempts 

- Context switch between LL and SC results in SC to fail



Spinlocks: reducing wasted cycles

- Spinning for locks can introduce significant CPU overheads and increase 
energy consumption

- How to reduce spinning in spinlocks?



Spinlocks: reducing wasted cycles

- Spinning for locks can introduce significant CPU overheads and increase 
energy consumption

- How to reduce spinning in spinlocks?
- Strategy: Back-off after every failure, exponential back-off used mostly   

lock( lock_t *L) {      
           u64 backoff = 0;  
           while(LoadLinked(L) || !StoreConditional(L, 1)){
                      if(backoff  < 63)   ++backoff;
                            pause(1 << backoff);   // Hint to processor 
}



Fairness in spinlocks

- Spinlock implementations discussed so far are not fair, 
- no bounded waiting

- To ensure fairness, some notion of ordering is required
- What if the threads are granted the lock in the order of their arrival to 

the lock contention loop?
- A single lock variable may not be sufficient
- Example solution: Ticket spinlocks



Atomic fetch and add (xadd on X86)

 xadd     R,     M

 TmpReg T  = R + [M]
 R = [M]
[M]  = T

- Example:  M = 100;  RAX = 200
- After executing “lock xadd  %RAX, M”, value 

of RAX = 100, M = 300
- Require lock prefix to be atomic 



Ticket spinlocks (OSTEP Fig. 28.7)

struct lock_t{
                long ticket;
                long turn;
}; 
void init_lock (struct lock_t *L){
    L → ticket = 0;  L → turn = 0;
}
void unlock(struct lock_t *L){
          L → turn++;
}   

void lock(struct lock_t *L){
   long myturn = xadd(&L → ticket, 1);
   while(myturn != L → turn)
            pause(myturn - L → turn);
}   

- Example: Order of arrival: T1 T2 T3
- T1 (in CS) : myturn = 0, L = {1, 0} 
- T2: myturn = 1, L = {2, 0}
- T3: myturn = 2, L = {3,0}
- T1 unlocks,  L = {3, 1}. T2 enters CS



Ticket spinlock

Ticket = N + 1
Turn = K

myturn = 0……...

Thread-0Thread-K

- Local variable “myturn” is equivalent to the order of arrival
- If a thread is in CS ⇒ Local Turn must be same as “Turn”
- Threads waiting = Ticket - Turn -1

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Finished CSContending



Ticket spinlock

Ticket = N + 1
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Value of turn incremented on lock release
- Thread which arrived just after the current thread enters the CS
- When a new thread arrives, it gets the lock after the other threads 

ahead of the new thread acquire and release the lock  

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N



Ticket spinlock

Ticket  =   N + 2
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Ticket spinlock guarantees bounded waiting
- If N threads are contending for the lock and execution of the CS 

consumes T cycles, then bound = N * T (assuming negligible context 
switch overhead)   

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Thread-N+1

myturn = N+1



Ticket spinlock (with yield)

void lock(struct lock_t *L){
   long myturn = xadd(&L → ticket, 1);
   while(myturn != L → turn)
            sched_yield( );
}   

- Why spin if the thread’s turn is yet to 
come?

- Yield the CPU and allow the thread 
with ticket (or other non contending 
threads)

- Further optimization
- Allow the thread with “myturn”  

value one more than “L→ turn” 
to continue spinning



Reader-writer locks

- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree
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- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree

struct BST{
                     struct node *root;
                     rwlock_t *lock;
}; 

struct node{
                    item_t item;
                    struct node *left;
                    struct node*right;
}; 

void insert(BST *t, item_t item);
void lookup(BST *t, item_t item);



Reader-writer locks

- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree

struct BST{
                     struct node *root;
                     rwlock_t *lock;
}; 

struct node{
                    item_t item;
                    struct node *left;
                    struct node*right;
}; 

void insert(BST *t, item_t item);
void lookup(BST *t, item_t item);

- If multiple threads call lookup( ), they 
may traverse the tree in parallel



Implementation of read-write locks

struct rwlock_t{
      Lock read_lock; 
      Lock write_lock;
      int num_readers;  
}

init_lock(rwlock_t *rL)
{
    init_lock(&rL → read_lock);
    init_lock(&rL → write_lock);
    rL → num_readers = 0;
}



Implementation of read-write locks (writers)

struct rwlock_t{
      Lock read_lock; 
      Lock write_lock;
      int num_readers;  
}

init_lock(rwlock_t *rL)
{
    init_lock(&rL → read_lock);
    init_lock(&rL → write_lock);
    rL → num_readers = 0;
}

void write_lock(rwlock_t *rL)
{
     lock(&rL → write_lock);
}

void write_unlock(rwlock_t *rL)
{
     unlock(&rL → write_lock);
}

- Write lock behavior is same as the typical lock, only one thread allowed to 
acquire the lock



Implementation of read-write locks (readers)
struct rwlock_t{
      Lock read_lock; 
      Lock write_lock;
      int num_readers;  
}
void read_lock(rwlock_t *rL)
{
     lock(&rL → read_lock);
     rL → num_readers++;
     if(rL → num_readers == 1)
           lock(&rL → write_lock);
     unlock(&rL → read_lock);
}

void read_unlock(rwlock_t *rL)
{
     lock(&rL → read_lock);
     rL → num_readers--;
     if(rL → num_readers == 0)
           unlock(&rL → write_lock);
     unlock(&rL → read_lock);
}



Implementation of read-write locks (readers)
struct rwlock_t{
      Lock read_lock; 
      Lock write_lock;
      int num_readers;  
}
void read_lock(rwlock_t *rL)
{
     lock(&rL → read_lock);
     rL → num_readers++;
     if(rL → num_readers == 1)
           lock(&rL → write_lock);
     unlock(&rL → read_lock);
}

void read_unlock(rwlock_t *rL)
{
     lock(&rL → read_lock);
     rL → num_readers--;
     if(rL → num_readers == 0)
           unlock(&rL → write_lock);
     unlock(&rL → read_lock);
}

- The first reader acquires the write lock 
prevents writers to acquire lock

- The last reader releases the write lock to 
allow writers 



Software lock: Buggy #1
int flag[2] = {0,0};
void lock (int id)    /*id = 0 or 1 */
{
     while(flag[id ^ 1]));  // ^ → XOR
      flag[id] = 1;
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Solution for two threads, T0 and T1 with 
id 0 and 1, respectively 

- We have seen that this solution does not 
work, Why?



int flag[2] = {0,0};
void lock (int id)    /*id = 0 or 1 */
{
     while(flag[id ^ 1]));  // ^ → XOR
      flag[id] = 1;
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Solution for two threads, T0 and T1 with 
id 0 and 1, respectively 

- We have seen that this solution does not 
work, Why?

- Both threads can acquire the lock as 
“while condition check” and “setting the 
flag” is non-atomic

Software lock: Buggy #1



int flag[2] = {0,0};
void lock (int id)    /*id = 0 or 1 */
{
     flag[id] = 1;
     while(flag[id ^ 1]));  // ^ → XOR
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Does this solution work?

Software lock: Buggy #2



int flag[2] = {0,0};
void lock (int id)    /*id = 0 or 1 */
{
     flag[id] = 1;
     while(flag[id ^ 1]));  // ^ → XOR
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Does this solution work?
- No, as this can lead to a deadlock (flag[0] 

= flag[1] = 1) In other words the 
“progress” requirement is not met

- Progress: If no one has acquired the lock 
and there are contending threads, one of 
the threads must acquire the lock within 
a finite time 

Software lock: Buggy #2



int turn = 0;
void lock (int id)    /*id = 0 or 1 */
{
    while(turn == id ^ 1)); 
}  
void unlock (int id)
{
     turn = id ^ 1; 
}

- Assuming T0 invokes lock( ) first, does 
the solution provide mutual exclusion?

Software lock: Buggy #3



int turn = 0;
void lock (int id)    /*id = 0 or 1 */
{
    while(turn == id ^ 1)); 
}  
void unlock (int id)
{
     turn = id ^ 1; 
}

- Assuming T0 invokes lock( ) first, does 
the solution provide mutual exclusion?

- Yes it does, but there is another issue 
with this solution - two threads must 
request the lock in an alternate manner

- Progress requirement is not met
- Argument: one of the threads stuck 

in an infinite loop (in non-CS code) 

Software lock: Buggy #3



Peterson’s solution
int flag[2] = {0,0};   int turn = 0;
void lock (int id)    /*id = 0 or 1 */
{
    flag[id] = 1;
    turn  = id ^1;
    while(flag[id ^ 1]) && turn == (id ^1)); 
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Homework: Prove that mutual 
exclusion is guaranteed

- What about fairness?



int flag[2] = {0,0};   int turn = 0;
void lock (int id)    /*id = 0 or 1 */
{
    flag[id] = 1;
    turn  = id ^1;
    while(flag[id ^ 1]) && turn == (id ^1)); 
}  
void unlock (int id)
{
      flag[id] = 0;
}

- Homework: Prove that mutual 
exclusion is guaranteed 

- What about fairness?
- The lock is fair because if two 

threads are contending, they 
acquire the lock in an alternate 
manner

- Extending the solution to N 
threads is possible

Peterson’s solution


