
CS330: Operating Systems

Locks

Recap: Synchronization and locking

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Locking is necessary when multiple contexts access shared resources
- Example: Multiple threads, multiple OS execution contexts
- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock (infinitely)

Recap: Synchronization and locking

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Locking is necessary when multiple contexts access shared resources
- Example: Multiple threads, multiple OS execution contexts
- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock

Agenda: Spinlocks, Semaphore and mutex (waiting locks)

Spinlock: Buggy attempt

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

- Does this implementation work?

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

- Single core: Context switch
between line #4 and line #5

- Multicore: Two cores exiting the
while loop by reading lock = 0

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

- Single core: Context switch
between line #4 and line #5

- Multicore: Two cores exiting the
while loop by reading lock = 0

- Core issue: Compare and swap has to
happen atomically!

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock using atomic exchange

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(atomic_xchg(L, 1));
5. }
6. unlock(L)
7. {
8. *L = 0;
9. }

- Atomic exchange: exchange the value of
memory and register atomically

- atomic_xchg (int *PTR, int val) returns
the value at PTR before exchange

- Ensures mutual exclusion if “val” is
stored on a register

- No fairness guarantees

Spinlock using XCHG on X86
lock(lock_t *L)
{
 asm volatile(
 “mov $1, %%rax; ”
 “try: xchg %%rax, (%%rdi); ”
 “cmp $0, %%rax;”
 “jne try; ”
 : : : “memory”);
}
unlock(int *L) { *L = 0;}

- XCHG R, M ⇒ Exchange value of
register R and value at memory address
M

- RDI register contains the lock argument
- Exercise: Visualize a context switch

between any two instructions and
analyse the correctness

Spinlock using compare and swap

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(CAS(L, 0, 1));
5. }
6. unlock(L)
7. {
8. *L = 0;
9. }

- Atomic compare and swap: perform the
condition check and swap atomically

- CAS (int *PTR, int cmpval, int newval)
sets the value of PTR to newval if
cmpval is equal to value at PTR . Returns
0 on successful exchange

- No fairness guarantees!

CAS on X86: cmpxchg

cmpxchg source[Reg] destination [Mem/Reg]
Implicit registers : rax and flags

1. if rax == [destination]
2. then
3. flags[ZF] = 1
4. [destination] = source
5. else
6. flags[ZF] = 0
7. rax = [destination]

- “cmpxchg” is not atomic in
X86, should be used with a
“lock” prefix

Spinlock using CMPXCHG on X86
lock(lock_t *L)
{
asm volatile(
 “mov $1, %%rcx;”
 “try: xor %%rax, %%rax;”
 “lock cmpxchg %%rcx, (%%rdi);”
 “jnz try; ”
 : : : “rcx”, “rax”, “memory”);
}
unlock(lock_t *L) { *L = 0;}

- Value of RAX (=0) is compared
against value at address in register
RDI and exchanged with RCX (=1), if
they are equal

- Exercise: Visualize a context switch
between any two instructions and
analyse the correctness

Load Linked (LL) and Store conditional (SC)

- LoadLinked (R, M)
- Like a normal load, it loads R with value of M
- Additionally, the hardware keeps track of future stores to M

- StoreConditional (R, M)
- Stores the value of R to M if no stores happened to M after the

execution of LL instruction (after execution, R = 1)
- Otherwise, store is not performed (after execution R=0)

- Supported in RISC architectures like mips, risc-v etc.

Spinlock using LL and LC

lock_t *L; //initial value = 0
lock(lock_t *L)
{
 while(LoadLinked(L) ||
 !StoreConditional(L, 1));
}
unlock(lock_t *L) { *L = 0;}

try: LL R1, (R2); //R2 = lock address
 BNEQZ R1, try;
 ADDUI R1, R0, #1; //R1 = 1
 SC R1, (R2)
 BEQZ R1, try

- Efficient as the hardware avoids memory traffic for unsuccessful lock
acquire attempts

- Context switch between LL and SC results in SC to fail

Spinlocks: reducing wasted cycles

- Spinning for locks can introduce significant CPU overheads and increase
energy consumption

- How to reduce spinning in spinlocks?

Spinlocks: reducing wasted cycles

- Spinning for locks can introduce significant CPU overheads and increase
energy consumption

- How to reduce spinning in spinlocks?
- Strategy: Back-off after every failure, exponential back-off used mostly

lock(lock_t *L) {
 u64 backoff = 0;
 while(LoadLinked(L) || !StoreConditional(L, 1)){
 if(backoff < 63) ++backoff;
 pause(1 << backoff); // Hint to processor
}

Fairness in spinlocks

- Spinlock implementations discussed so far are not fair,
- no bounded waiting

- To ensure fairness, some notion of ordering is required
- What if the threads are granted the lock in the order of their arrival to

the lock contention loop?
- A single lock variable may not be sufficient
- Example solution: Ticket spinlocks

Atomic fetch and add (xadd on X86)

 xadd R, M

 TmpReg T = R + [M]
 R = [M]
[M] = T

- Example: M = 100; RAX = 200
- After executing “lock xadd %RAX, M”, value

of RAX = 100, M = 300
- Require lock prefix to be atomic

Ticket spinlocks (OSTEP Fig. 28.7)

struct lock_t{
 long ticket;
 long turn;
};
void init_lock (struct lock_t *L){
 L → ticket = 0; L → turn = 0;
}
void unlock(struct lock_t *L){
 L → turn++;
}

void lock(struct lock_t *L){
 long myturn = xadd(&L → ticket, 1);
 while(myturn != L → turn)
 pause(myturn - L → turn);
}

- Example: Order of arrival: T1 T2 T3
- T1 (in CS) : myturn = 0, L = {1, 0}
- T2: myturn = 1, L = {2, 0}
- T3: myturn = 2, L = {3,0}
- T1 unlocks, L = {3, 1}. T2 enters CS

Ticket spinlock

Ticket = N + 1
Turn = K

myturn = 0……...

Thread-0Thread-K

- Local variable “myturn” is equivalent to the order of arrival
- If a thread is in CS ⇒ Local Turn must be same as “Turn”
- Threads waiting = Ticket - Turn -1

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Finished CSContending

Ticket spinlock

Ticket = N + 1
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Value of turn incremented on lock release
- Thread which arrived just after the current thread enters the CS
- When a new thread arrives, it gets the lock after the other threads

ahead of the new thread acquire and release the lock

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Ticket spinlock

Ticket = N + 2
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Ticket spinlock guarantees bounded waiting
- If N threads are contending for the lock and execution of the CS

consumes T cycles, then bound = N * T (assuming negligible context
switch overhead)

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Thread-N+1

myturn = N+1

Ticket spinlock (with yield)

void lock(struct lock_t *L){
 long myturn = xadd(&L → ticket, 1);
 while(myturn != L → turn)
 sched_yield();
}

- Why spin if the thread’s turn is yet to
come?

- Yield the CPU and allow the thread
with ticket (or other non contending
threads)

- Further optimization
- Allow the thread with “myturn”

value one more than “L→ turn”
to continue spinning

Reader-writer locks

- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree

Reader-writer locks

- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree

struct BST{
 struct node *root;
 rwlock_t *lock;
};

struct node{
 item_t item;
 struct node *left;
 struct node*right;
};

void insert(BST *t, item_t item);
void lookup(BST *t, item_t item);

Reader-writer locks

- Allows multiple readers or a single writer to enter the CS
- Example: Insert, delete and lookup operations on a search tree

struct BST{
 struct node *root;
 rwlock_t *lock;
};

struct node{
 item_t item;
 struct node *left;
 struct node*right;
};

void insert(BST *t, item_t item);
void lookup(BST *t, item_t item);

- If multiple threads call lookup(), they
may traverse the tree in parallel

Implementation of read-write locks

struct rwlock_t{
 Lock read_lock;
 Lock write_lock;
 int num_readers;
}

init_lock(rwlock_t *rL)
{
 init_lock(&rL → read_lock);
 init_lock(&rL → write_lock);
 rL → num_readers = 0;
}

Implementation of read-write locks (writers)

struct rwlock_t{
 Lock read_lock;
 Lock write_lock;
 int num_readers;
}

init_lock(rwlock_t *rL)
{
 init_lock(&rL → read_lock);
 init_lock(&rL → write_lock);
 rL → num_readers = 0;
}

void write_lock(rwlock_t *rL)
{
 lock(&rL → write_lock);
}

void write_unlock(rwlock_t *rL)
{
 unlock(&rL → write_lock);
}

- Write lock behavior is same as the typical lock, only one thread allowed to
acquire the lock

Implementation of read-write locks (readers)
struct rwlock_t{
 Lock read_lock;
 Lock write_lock;
 int num_readers;
}
void read_lock(rwlock_t *rL)
{
 lock(&rL → read_lock);
 rL → num_readers++;
 if(rL → num_readers == 1)
 lock(&rL → write_lock);
 unlock(&rL → read_lock);
}

void read_unlock(rwlock_t *rL)
{
 lock(&rL → read_lock);
 rL → num_readers--;
 if(rL → num_readers == 0)
 unlock(&rL → write_lock);
 unlock(&rL → read_lock);
}

Implementation of read-write locks (readers)
struct rwlock_t{
 Lock read_lock;
 Lock write_lock;
 int num_readers;
}
void read_lock(rwlock_t *rL)
{
 lock(&rL → read_lock);
 rL → num_readers++;
 if(rL → num_readers == 1)
 lock(&rL → write_lock);
 unlock(&rL → read_lock);
}

void read_unlock(rwlock_t *rL)
{
 lock(&rL → read_lock);
 rL → num_readers--;
 if(rL → num_readers == 0)
 unlock(&rL → write_lock);
 unlock(&rL → read_lock);
}

- The first reader acquires the write lock
prevents writers to acquire lock

- The last reader releases the write lock to
allow writers

Software lock: Buggy #1
int flag[2] = {0,0};
void lock (int id) /*id = 0 or 1 */
{
 while(flag[id ^ 1])); // ^ → XOR
 flag[id] = 1;
}
void unlock (int id)
{
 flag[id] = 0;
}

- Solution for two threads, T0 and T1 with
id 0 and 1, respectively

- We have seen that this solution does not
work, Why?

int flag[2] = {0,0};
void lock (int id) /*id = 0 or 1 */
{
 while(flag[id ^ 1])); // ^ → XOR
 flag[id] = 1;
}
void unlock (int id)
{
 flag[id] = 0;
}

- Solution for two threads, T0 and T1 with
id 0 and 1, respectively

- We have seen that this solution does not
work, Why?

- Both threads can acquire the lock as
“while condition check” and “setting the
flag” is non-atomic

Software lock: Buggy #1

int flag[2] = {0,0};
void lock (int id) /*id = 0 or 1 */
{
 flag[id] = 1;
 while(flag[id ^ 1])); // ^ → XOR
}
void unlock (int id)
{
 flag[id] = 0;
}

- Does this solution work?

Software lock: Buggy #2

int flag[2] = {0,0};
void lock (int id) /*id = 0 or 1 */
{
 flag[id] = 1;
 while(flag[id ^ 1])); // ^ → XOR
}
void unlock (int id)
{
 flag[id] = 0;
}

- Does this solution work?
- No, as this can lead to a deadlock (flag[0]

= flag[1] = 1) In other words the
“progress” requirement is not met

- Progress: If no one has acquired the lock
and there are contending threads, one of
the threads must acquire the lock within
a finite time

Software lock: Buggy #2

int turn = 0;
void lock (int id) /*id = 0 or 1 */
{
 while(turn == id ^ 1));
}
void unlock (int id)
{
 turn = id ^ 1;
}

- Assuming T0 invokes lock() first, does
the solution provide mutual exclusion?

Software lock: Buggy #3

int turn = 0;
void lock (int id) /*id = 0 or 1 */
{
 while(turn == id ^ 1));
}
void unlock (int id)
{
 turn = id ^ 1;
}

- Assuming T0 invokes lock() first, does
the solution provide mutual exclusion?

- Yes it does, but there is another issue
with this solution - two threads must
request the lock in an alternate manner

- Progress requirement is not met
- Argument: one of the threads stuck

in an infinite loop (in non-CS code)

Software lock: Buggy #3

Peterson’s solution
int flag[2] = {0,0}; int turn = 0;
void lock (int id) /*id = 0 or 1 */
{
 flag[id] = 1;
 turn = id ^1;
 while(flag[id ^ 1]) && turn == (id ^1));
}
void unlock (int id)
{
 flag[id] = 0;
}

- Homework: Prove that mutual
exclusion is guaranteed

- What about fairness?

int flag[2] = {0,0}; int turn = 0;
void lock (int id) /*id = 0 or 1 */
{
 flag[id] = 1;
 turn = id ^1;
 while(flag[id ^ 1]) && turn == (id ^1));
}
void unlock (int id)
{
 flag[id] = 0;
}

- Homework: Prove that mutual
exclusion is guaranteed

- What about fairness?
- The lock is fair because if two

threads are contending, they
acquire the lock in an alternate
manner

- Extending the solution to N
threads is possible

Peterson’s solution

