
CS330: Operating Systems

Introduction



What is an Operating System?

- Operating system is a software layer between 
the hardware and the applications

- What are the functions of this middleware?
- Why is this intermediate layer necessary?

Hardware (CPU, Memory, I/O)

            Operating System (OS)

                Applications

What if this software layer is removed from the scene?

Even if it matters, why should we learn about this layer?
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What if we skip the OS layer?

      Browser      Word   
processor

 Your own 
application

                                      User libraries 

Logic
Programming (C, Python etc.)
Data structures and Algorithms  

 I know logic gates to ISA

 Can build a small computer for my program!

What is the role of the OS?

Oh! Need a computer to show my 
skills.
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language code to machine 
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What if we skip the OS layer?

High-level 
programming 
language

I understand only 
assembly code.

(Will) know compilers to 
convert high-level 
language code to machine 
assembly

Conclusion: do not need the OS.  Hang-on, may be there is something else! 



Program execution
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Inside program execution

hello.c
Compile

a.out
Execute $./a.out You said only CPU can execute!

CPU execution (from CS220) 

             PC

        Reg (R1)

        Reg (R2)

Code

Data

Fetch

Store

Load

- Loads instruction pointed to by PC
- Decode instruction
- Load operand into registers
- Execute instruction (ALU)
- Store results

CPU Memory



What is an Operating System?

- OS bridges the semantic gap between the notions 
of application execution and real execution

- OS loads an executable from disk to memory, 
allocates/frees memory dynamically

- OS initializes the CPU state i.e., the PC and 
other registers 

- OS provides interfaces to access I/O  devices 
- OS facilitates hardware resource sharing and 

management (How?)

Hardware (CPU, Memory, I/O)

            Operating System (OS)

                Applications



Resource virtualization

- OS provides virtual representation of physical resources
- Easy to use abstractions with well defined interfaces 
- Examples: 

Physical resource Abstraction Interfaces

CPU Process Create, Destroy, Stop etc.

Memory Virtual memory Allocate, Free, Permissions

Disk File system tree Create, Delete, Open, Close etc.



What is virtualization of resources?

- Definition 1  “Not physically existing as such but made by software to 
appear to do so.”

- By implication
- OS multiplexes the physical resources
- OS manages the physical resources

- Efficient management becomes more crucial with multitasking

1. Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual



Design goals of OS abstractions

- Simple to use and flexible
- Minimize OS overheads

- Any layer of indirection incurs certain overheads!
- Protection and isolation
- Configurable resource management policies
- Reliability and  security

Next lecture: The process abstraction  


