
CS330: Operating Systems

Introduction

What is an Operating System?

- Operating system is a software layer between
the hardware and the applications

- What are the functions of this middleware?
- Why is this intermediate layer necessary?

Hardware (CPU, Memory, I/O)

 Operating System (OS)

 Applications

What if this software layer is removed from the scene?

Even if it matters, why should we learn about this layer?

What is an Operating System?

- Operating system is a software layer between
the hardware and the applications

- What are the functions of this middleware?
- Why is this intermediate layer necessary?

Hardware (CPU, Memory, I/O)

 Operating System (OS)

 Applications

What if this software layer is removed from the scene?

Even if it matters, why should we learn about this layer?

What is an Operating System?

- Operating system is a software layer between
the hardware and the applications

- What are the functions of this middleware?
- Why is this intermediate layer necessary?

Hardware (CPU, Memory, I/O)

 Operating System (OS)

 Applications

What if this software layer is removed from the scene?

Even if it matters, why should we learn about this layer?

What if we skip the OS layer?

 Browser Word
processor

 Your own
application

 User libraries

 Can build applications

 Can even build libraries

Logic
Programming (C, Python etc.)
Data structures and Algorithms

What if we skip the OS layer?

 Browser Word
processor

 Your own
application

 User libraries

 Can build applications

 Can even build libraries

Logic
Programming (C, Python etc.)
Data structures and Algorithms

Oh! Need a computer to show my
skills.

What if we skip the OS layer?

 Browser Word
processor

 Your own
application

 User libraries

Logic
Programming (C, Python etc.)
Data structures and Algorithms

 I know logic gates to ISA

 Can build a small computer for my program!

Oh! Need a computer to show my
skills.

What if we skip the OS layer?

 Browser Word
processor

 Your own
application

 User libraries

Logic
Programming (C, Python etc.)
Data structures and Algorithms

 I know logic gates to ISA

 Can build a small computer for my program!

What is the role of the OS?

Oh! Need a computer to show my
skills.

Hardware (CPU, Memory, I/O)

 Applications

 Library API

What if we skip the OS layer?

High-level
programming
language

I understand only
assembly code.

(Will) know compilers to
convert high-level
language code to machine
assembly

Hardware (CPU, Memory, I/O)

 Applications

 Library API

What if we skip the OS layer?

High-level
programming
language

I understand only
assembly code.

(Will) know compilers to
convert high-level
language code to machine
assembly

Conclusion: do not need the OS. Hang-on, may be there is something else!

Program execution

hello.c
Compile

a.out
Execute $./a.out

Program execution

hello.c
Compile

a.out
Execute $./a.out You said only CPU can execute!

Inside program execution

hello.c
Compile

a.out
Execute $./a.out You said only CPU can execute!

CPU execution (from CS220)

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

- Loads instruction pointed to by PC
- Decode instruction
- Load operand into registers
- Execute instruction (ALU)
- Store results

CPU Memory

What is an Operating System?

- OS bridges the semantic gap between the notions
of application execution and real execution

- OS loads an executable from disk to memory,
allocates/frees memory dynamically

- OS initializes the CPU state i.e., the PC and
other registers

- OS provides interfaces to access I/O devices
- OS facilitates hardware resource sharing and

management (How?)

Hardware (CPU, Memory, I/O)

 Operating System (OS)

 Applications

Resource virtualization

- OS provides virtual representation of physical resources
- Easy to use abstractions with well defined interfaces
- Examples:

Physical resource Abstraction Interfaces

CPU Process Create, Destroy, Stop etc.

Memory Virtual memory Allocate, Free, Permissions

Disk File system tree Create, Delete, Open, Close etc.

What is virtualization of resources?

- Definition 1 “Not physically existing as such but made by software to
appear to do so.”

- By implication
- OS multiplexes the physical resources
- OS manages the physical resources

- Efficient management becomes more crucial with multitasking

1. Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual

Design goals of OS abstractions

- Simple to use and flexible
- Minimize OS overheads

- Any layer of indirection incurs certain overheads!
- Protection and isolation
- Configurable resource management policies
- Reliability and security

Next lecture: The process abstraction

