
CS330: Operating Systems

Filesystem: caching and consistency

Recap: file system

/

etc bin sbin home lib

code file.txt

USER
OS

File system
layer

Storage devices

Hard disk
drive

SSD

Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

Recap: file system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File systems maintain several meta-data structures like super blocks, inodes,
directory entries to provide a file system abstractions like files, directories

- How to search/lookup files/directories in a given path?
- Read the content of the root inode and search the next level dir using the

name and find out its inode number
- Read the inode to check permissions and repeat the process
- Inode contains the index structures to deduce the disk block address given

an logical offset

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Executables, configuration files, library etc. are accessed frequently
- Many directories containing executables, configuration files are also accessed

very frequently. Metadata blocks storing inodes, indirect block pointers are
also accessed frequently

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Can we store frequently accessed disk data in memory?
- What is the storage and lookup mechanism? Are the data and metadata

caching mechanisms same?
- Are there any complications because of caching?
- How the cache managed? What should be the eviction policy?

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

- Works fine for metadata as they are
addressed using block numbers

File layer caching (Linux page cache)

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Store and lookup memory cache
using {inode number, file offset} as
the key

- For data, index translation is not
required for file access

- Metadata may not have a file
association, should be handled
differently (using a special inode
may be!)

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Can we store frequently accessed disk data in memory?
- What is the storage and lookup mechanism? Are the data and metadata

caching mechanisms same?
- File layer caching is desirable as it avoids index accesses on hit, special

mechanism required for metadata.
- Are there any complications because of caching?
- How the cache managed? What should be the eviction policy?

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees

- Example-1: If a write() system call is successful, data must be written
- Example-2: If a file creation is successful then, file is created.
- Difficult to achieve with asynchronous I/O

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees

- Example-1: If a write() system call is successful, data must be written
- Example-2: If a file creation is successful then, file is created.
- Difficult to achieve with asynchronous I/O

- Consistency w.r.t. file system invariants
- Example-1: If a block is pointed to by an inode data pointers then,

corresponding block bitmap must be set
- Example-2: Directory entry contains an inode, inode must be valid
- Possible, require special techniques

File system inconsistency: root causes

Update contents of disk
blocks

Disk block caching
(delayed write)

System crash (software,
power failure)

Storage medium failure
(sector(s) damaged)

Possible
inconsistent
file system

- No consistency issues if user operation
translates to read-only operations on
the disk blocks

- Device level atomicity guarantees
matter!

Example: Append to a file

Inode Block
bitmap Data block

Memory

Inode Block
bitmap Data block

Disk

- Steps: (i) seek to the end of
file, (ii) allocate a new block,
(iii) write user data

- Inode modifications: size and
block pointers

- Block bitmap update: set
used block bit for the newly
allocated block(s)

- Data update: data block
content is updated

Example: Append to a file

Inode Block
bitmap Data block

Memory

Inode Block
bitmap Data block

Disk

- Steps: (i) seek to the end of
file, (ii) allocate a new block,
(iii) write user data

- Inode modifications: size and
block pointers

- Block bitmap update: set
used block bit for the newly
allocated block(s)

- Data update: data block
content is updated

Three write operations reqd. to complete the
operation, what if some of them are incomplete?

Failure scenarios and implications

Written Yet to be written Implications

 Data block Inode, Block bitmap File system is consistent
(Lost data)

Inode Block bitmap, Data block File system is inconsistent
(correctness issues)

Block bitmap Inode, Data block File system is inconsistent
(space leakage)

- All failure scenarios may not result in consistency issues!

Failure scenarios and implications

Written Yet to be written Implications

Data block, Block bitmap Inode File system is inconsistent
(space leakage)

Inode, Data block Block bitmap File system is inconsistent
(correctness issues)

Inode, Block bitmap Data block File system is consistent
(Incorrect data)

- Careful ordering of operations may reduce the risk of inconsistency
- But, how to ensure correctness?

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

- If the FS was not cleanly unmounted, perform sanity checks at different
levels: superblock, block bitmap, inode, directory content

File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last

used, How to know?
- Maintain the last unmount information on superblock

- If the FS was not cleanly unmounted, perform sanity checks at different
levels: superblock, block bitmap, inode, directory content

- Sanity checks and verifying invariants across metadata. Examples,
- Block bitmap vs. Inode block pointers
- Used inodes vs. directory content

