
CS330: Operating Systems

Filesystem



Recap: file system
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- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices



Recap: Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode (in-memory) is many-to-one
- How is the inode maintained in a persistent manner? How to access data at 

different offsets of a file? How directory structure is maintained?

          P1
fd1 =open(“file1”)

          P2
fd1 = open(“file1”)
fd2 = open(“file2”) 
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Step-1: Disk device partitioning
- Partition information is stored in the 

boot sector of the disk
- Creation of partition is the first step

- It does not create a file system 
- A file system is created on a partition 

to manage the physical device and 
present the logical view

- All file systems provide utilities to 
initialize file system on the partition 
(e.g., MKFS)   
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Physical Disk Logical Partitions 

- fdisk
- parted



Step 2: File system creation

- MKFS creates initial structures in the logical partition
- Creates the entry point to the filesystem (known as the super block)
- At this point the file system is ready to be mounted
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Step 3: File system mounting

                          

  EXFS information
(superblock, mount point)

     mount -t exfs /dev/sdb1 /home 

 mount( “/dev/sdb1”, “/home”, 
“EXFS”,flags , fs_options)

- mount( ) associates a superblock with 
the file system mount point

- Example: The OS will use the 
superblock associated with the mount 
point “/home” to reach any file/dir 
under “/home” 

- Superblock is a copy of the on-disk 
superblock along with other 
information
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  Load file system



Structure of an example superblock

- Superblock contains information 
regarding the device and the file 
system organization in the disk 

- Pointers to different metadata related 
to the file system are also maintained 
by the superblock

- Ex: List of free blocks is required 
before adding data to a  new 
file/directory

struct superblock{
     u16 block_size;  
     u64 num_blocks;
     u64 last_mount_time;
     u64 root_inode_num;
     u64 max_inodes; 
     disk_off_t inode_table;
     disk_off_t blk_usage_bitmap; 
      ... 
};



File system organization

Super block

Inode table address 

Total (Max) inodes

Other information

                                                                                                        Data blocks SB

Inode bitmap address 

Block bitmap Inode bitmap Inode table

- Given any inode number, load the 
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
      inode_t *inode = alloc_mem_inode( );
     read_disk(inode, sb → inode_table + 
                                  ino * sizeof(inode)); 
    return inode; 
}



File system organization

Super block

Inode table address 

Total (Max) inodes

Other information

                                                                                                        Data blocks SB

Inode bitmap address 

Block bitmap Inode bitmap Inode table

- Given any inode number, load the 
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
      inode_t *inode = alloc_mem_inode( );
     read_disk(inode, sb → inode_table + 
                                  ino * sizeof(inode)); 
    return inode; 
}

- File system is mounted, the inode number for root of the file system (i.e., the 
mount point) is known, root inode can be accessed.

- How to search/lookup files/directories under root inode?
- Specifically, 

- How to locate the content in disk? 
- How to keep track of size, permissions etc.? 



Inode
- A on-disk structure containing information regarding files/directories in 

the unix systems
- Represented by a unique number in the file system (e.g., in Linux, “ls 

-i filename” can be used to print the inode)
- Contains access permissions, access time, file size etc.
- Most importantly, inode contains information regarding the file data 

location on the device
- Directory inodes also contain information regarding its content, albeit the 

content is structured (for searching files)



Problem: file offset to disk address mapping

- File size can range from few bytes to gigabytes
- Can be accessed in a sequential or random manner
- How to design the mapping structure? 
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Contiguous allocation

- Works nicely for both sequential and random access
- Append operation is difficult, How to expand files? Require relocation!
- External fragmentation is a concern  
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Linked allocation

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access 
- Why maintain last block not size?

Inode
...

Start = K
Last = M

...

0

S-1

K

K+1

  K+2



Linked allocation

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access 
- Why maintain last block not size? Efficient append operation!
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Direct block pointers

- Inode contains direct pointers to the block
- Flexible: growth, shrink, random access is good
- Can not support files of larger size!
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Indirect block pointers

- Inode contains the pointers to a block containing pointers to data blocks
- Advantages: flexible, random access is good 
- Disadvantages: Indirect block access overheads (even for small files)
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Hybrid block pointers: Ext2 file system
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Ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct pointers {PTR [0] to PTR [11]}
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File system organization
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- Given any inode number, load the 
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
      inode_t *inode = alloc_mem_inode( );
     read_disk(inode, sb → inode_table + 
                                  ino * sizeof(inode)); 
    return inode; 
}

- File system is mounted, the inode number for root of the file system (mount 
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Specifically, 

- How to locate the content in disk? 
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.? 
- Inode is used to maintain these information



Organizing the directory content

- Fixed size directory entry is a simple way to organize directory content
- Advantages:  avoid fragmentation, rename 
- Disadvantages: space wastage 

struct dir_entry{
                    inode_t   inode_num;
                    char name[FNAME_MAX];                                     
};

Fixed size directory entry



Organizing the directory content

- Variable sized directory entries contain length explicitly
- Advantages:  less space wastage (compact)
- Disadvantages: inefficient rename, require compaction

struct dir_entry{
                    inode_t   inode_num;
                    char name[FNAME_MAX];                                     
};

Fixed size directory entry
struct dir_entry{
                    inode_t   inode_num;
                    u8 entry_len; 
                    char name[name_len];                                     
};

Variable size directory entry



File system organization
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- Given any inode number, load the 
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
      inode_t *inode = alloc_mem_inode( );
     read_disk(inode, sb → inode_table + 
                                  ino * sizeof(inode)); 
    return inode; 
}

- File system is mounted, the inode number for root of the file system (mount 
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Read the content of the root inode and search the next level dir/file
- Specifically, 

- How to locate the content in disk? 
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.? 
- Inode is used to maintain these information


