CS330: Operating Systems

Filesystem

Recap: file system

USER Storage devices
< 0s (&2
JE i
/ e Hard disk
drive

. : . File system
etc bin sbmﬂhome lib layer SSD
code file.txt Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

Recap: Process view of file

PCB (P1)

P1

fd1 =open(“file1”) ol1l213 file1
~— Inode 1
N
P2 PCB (P2) /
3

. file1
fd1 = open(“file1”)
fd2 = open(“file2”) o111]2

4 file 2 Inode 2

N

- Per-process file descriptor table with pointer to a “file” object

- file object — inode (in-memory) is many-to-one

- How is the inode maintained in a persistent manner? How to access data at
different offsets of a file? How directory structure is maintained?

Step-1: Disk device partitioning

Physical Disk
/dev/sda - fdisk

@ - parted

Logical Partitions

C
—

C

/dev/sdail

/dev/sda2

/dev/sda3

Partition information is stored in the

boot sector of the disk

Creation of partition is the first step
- |t does not create a file system

A file system is created on a partition

to manage the physical device and

present the logical view

All file systems provide utilities to

initialize file system on the partition

(e.g., MKFS)

Step 2: File system creation /dev/sda2

Physical Disk Logical Partitions

E /dev/sda2

/dev/sda - fdisk E /dev/sdal
Ej _parted mkfs EXFS /dev/sda2

| /dev/sda3

- MKEFS creates initial structures in the logical partition
- (reates the entry point to the filesystem (known as the super block)
- At this point the file system is ready to be mounted

[EY

N-1

Step 3: File system mounting

EXFS information
(superblock, mount point)

Load file system

| 05 &)

mount(“/dev/sdb1”, “/home”,
“EXFS” flags, fs_options)

f USER
mount -t exfs /dev/sdb1 /home @

Y

574
i)

mount() associates a superblock with
the file system mount point

Example: The OS will use the
superblock associated with the mount
point “/home” to reach any file/dir
under “/home”

Superblock is a copy of the on-disk
superblock along with other
Information

Structure of an example superblock

struct superblock{

u16 block_size;

u64 num_blocks;

u64 last mount_time;

U64 root_inode_nums;

u64 max_inodes;

disk_off tinode_table;
disk_off_t blk_usage_bitmap;

- Superblock contains information

regarding the device and the file
system organization in the disk

- Pointers to different metadata related

to the file system are also maintained
by the superblock
- Ex: List of free blocks is required
before adding datato a new
file/directory

File system organization

E Block bitmap Inode bitmap

Inode table Data blocks
A

- Given any inode number, load the
Super block Inode structure into memory

Inode bitmap address [—

inode_t *get_inode(SB *sb, long ino){

Inode table address imode_t *inode = alloc_mem_inode();
Total (Max) inodes read_disk(inode, sb > inode_table +
Other information o~ sizeof(inode)) >

return inode;

File system organization

- File system is mounted, the inode number for root of the file system (i.e., the
mount point) is known, root inode can be accessed.
- How to search/lookup files/directories under root inode?
- Specifically,
- How to locate the content in disk?
- How to keep track of size, permissions etc.?

Inode

- Aon-disk structure containing information regarding files/directories in
the unix systems
- Represented by a unique number in the file system (e.g., in Linux, “ls
-i filename” can be used to print the inode)
- (Contains access permissions, access time, file size etc.
- Most importantly, inode contains information regarding the file data
location on the device
- Directory inodes also contain information regarding its content, albeit the
content is structured (for searching files)

Problem: file offset to disk address mapping

Block device

User view of file

How to efficiently

0 translate file offset to

[EY

device address?

[EY

% —

- File size can range from few bytes to gigabytes
- (an be accessed in a sequential or random manner
- How to design the mapping structure?

N-1

Contiguous allocation

0
Inode K
start=K > >
size=N K+N-1
S-1

- Works nicely for both sequential and random access
- Append operation is difficult, How to expand files? Require relocation!
- External fragmentation is a concern

Linked allocation

0
Inode K
Start=K > > K+1
Last=M
Yyl K+2
4‘:
S-1

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access
- Why maintain last block not size?

Linked allocation

0
Inode K
Start=K > > K+1
Last=M
Yyl K+2
4‘:
S-1

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access
- Why maintain last block not size? Efficient append operation!

Direct block pointers

Inode K,

K

k, |x |x, > > 1
K4 X KS KS

- Inode contains direct pointers to the block
- Flexible: growth, shrink, random access is good
- Can not support files of larger size!

Indirect block pointers

S-1

- Inode contains the pointers to a block containing pointers to data blocks
- Advantages: flexible, random access is good
- Disadvantages: Indirect block access overheads (even for small files)

Hybrid block pointers: Ext2 file system

Ext2/3 inode

Direct pointers {PTR [0] to PTR [11]}

K

0

K

1

K

2

Single indirect {PTR [12]}

Double indirect {PTR [13]}

Triple indirect {PTR [14]}

K

11

Il

I

2

L

File block address (0 -11)

File block address (12 -1035)

File block address (1036 to 1049611)

File block address (?? to ??)

File system organization

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,
- How to search/lookup files/directories under root inode?
- Specifically,
- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

Organizing the directory content

Fixed size directory entry

struct dir_entry{
inode_t inode_num;
char name[FNAME_MAX];

- Fixed size directory entry is a simple way to organize directory content
- Advantages: avoid fragmentation, rename
- Disadvantages: space wastage

Organizing the directory content

Fixed size directory entry Variab.Ie size directory entry
struct dir_entry{

inode t inode num;
u8 entry_len;
char name[name_len];

struct dir_entry{
inode_t inode_num;
char name[FNAME_MAX];

- Variable sized directory entries contain length explicitly
- Advantages: less space wastage (compact)
- Disadvantages: inefficient rename, require compaction

File system organization

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,
- How to search/lookup files/directories under root inode?
- Read the content of the root inode and search the next level dir/file
- Specifically,
- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

