
CS330: Operating Systems

Filesystem

Recap: file system

/

etc bin sbin home lib

code file.txt

USER
OS

File system
layer

Storage devices

Hard disk
drive

SSD

Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

Recap: Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode (in-memory) is many-to-one
- How is the inode maintained in a persistent manner? How to access data at

different offsets of a file? How directory structure is maintained?

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

Step-1: Disk device partitioning
- Partition information is stored in the

boot sector of the disk
- Creation of partition is the first step

- It does not create a file system
- A file system is created on a partition

to manage the physical device and
present the logical view

- All file systems provide utilities to
initialize file system on the partition
(e.g., MKFS)

/dev/sda /dev/sda1

/dev/sda2

/dev/sda3

Physical Disk Logical Partitions

- fdisk
- parted

Step 2: File system creation

- MKFS creates initial structures in the logical partition
- Creates the entry point to the filesystem (known as the super block)
- At this point the file system is ready to be mounted

/dev/sda /dev/sda1

/dev/sda2

/dev/sda3

Physical Disk Logical Partitions

- fdisk
- parted mkfs EXFS /dev/sda2

/dev/sda2

0
1
2

N-1

Step 3: File system mounting

 EXFS information
(superblock, mount point)

 mount -t exfs /dev/sdb1 /home

 mount(“/dev/sdb1”, “/home”,
“EXFS”,flags , fs_options)

- mount() associates a superblock with
the file system mount point

- Example: The OS will use the
superblock associated with the mount
point “/home” to reach any file/dir
under “/home”

- Superblock is a copy of the on-disk
superblock along with other
information

OS

USER

 Load file system

Structure of an example superblock

- Superblock contains information
regarding the device and the file
system organization in the disk

- Pointers to different metadata related
to the file system are also maintained
by the superblock

- Ex: List of free blocks is required
before adding data to a new
file/directory

struct superblock{
 u16 block_size;
 u64 num_blocks;
 u64 last_mount_time;
 u64 root_inode_num;
 u64 max_inodes;
 disk_off_t inode_table;
 disk_off_t blk_usage_bitmap;
 ...
};

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (i.e., the
mount point) is known, root inode can be accessed.

- How to search/lookup files/directories under root inode?
- Specifically,

- How to locate the content in disk?
- How to keep track of size, permissions etc.?

Inode
- A on-disk structure containing information regarding files/directories in

the unix systems
- Represented by a unique number in the file system (e.g., in Linux, “ls

-i filename” can be used to print the inode)
- Contains access permissions, access time, file size etc.
- Most importantly, inode contains information regarding the file data

location on the device
- Directory inodes also contain information regarding its content, albeit the

content is structured (for searching files)

Problem: file offset to disk address mapping

- File size can range from few bytes to gigabytes
- Can be accessed in a sequential or random manner
- How to design the mapping structure?

User view of file

0
1
2

N-1

0
1
2

S-1

Inode

Block device
How to efficiently
translate file offset to
device address?

Contiguous allocation

- Works nicely for both sequential and random access
- Append operation is difficult, How to expand files? Require relocation!
- External fragmentation is a concern

Inode
...

start = K
size = N
 ...

0

S-1

 K

 K+N-1

Linked allocation

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access
- Why maintain last block not size?

Inode
...

Start = K
Last = M

...

0

S-1

K

K+1

 K+2

Linked allocation

- Every block contains pointer to next block
- Advantage: flexible, easy to grow and shrink, Disadvantage: random access
- Why maintain last block not size? Efficient append operation!

Inode
...

Start = K
Last = M

...

0

S-1

K

K+1

 K+2

Direct block pointers

- Inode contains direct pointers to the block
- Flexible: growth, shrink, random access is good
- Can not support files of larger size!

Inode
...

 ...

0

S-1

K0

K1

 Ks

K0 K1 K2

K4 Ks

Indirect block pointers

- Inode contains the pointers to a block containing pointers to data blocks
- Advantages: flexible, random access is good
- Disadvantages: Indirect block access overheads (even for small files)

Inode
...

 ...

0

S-1

I0

K0

 K1

I0 I1 I2

K0 K1 K2 K3

Hybrid block pointers: Ext2 file system

K0

Ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct pointers {PTR [0] to PTR [11]}

File block address (0 -11)

I1

Single indirect {PTR [12]}

K1 K2 K11

File block address (12 -1035)

Double indirect {PTR [13]}

I2 File block address (1036 to 1049611)

Triple indirect {PTR [14]}

I3 File block address (?? to ??)

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Specifically,

- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

Organizing the directory content

- Fixed size directory entry is a simple way to organize directory content
- Advantages: avoid fragmentation, rename
- Disadvantages: space wastage

struct dir_entry{
 inode_t inode_num;
 char name[FNAME_MAX];
};

Fixed size directory entry

Organizing the directory content

- Variable sized directory entries contain length explicitly
- Advantages: less space wastage (compact)
- Disadvantages: inefficient rename, require compaction

struct dir_entry{
 inode_t inode_num;
 char name[FNAME_MAX];
};

Fixed size directory entry
struct dir_entry{
 inode_t inode_num;
 u8 entry_len;
 char name[name_len];
};

Variable size directory entry

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Read the content of the root inode and search the next level dir/file
- Specifically,

- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

