
CS330: Operating Systems

Files

The file system

/

etc bin sbin home lib

code file.txt

USER Storage devices

Hard disk
drive

SSD

Others

OS

End-user wants see a
nice tree view. Let me
enable it through a
simple system call
APIs.

The file system

/

etc bin sbin home lib

code file.txt

USER
OS

File system
layer

Storage devices

Hard disk
drive

SSD

Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- Processes identify files through a
file handle a.k.a. file descriptors

- In UNIX, the POSIX file API is
used to access files, devices,
sockets etc.

- What is the mapping between
library functions and system
calls?

System call API
(open, close, read, write …)

Files Devices Sockets

open: getting a handle

int open (char *path, int flags, mode_t mode)

open: getting a handle

int open (char *path, int flags, mode_t mode)

- Access mode specified in flags : O_RDONLY, O_RDWR, O_WRONLY
- Access permissions check performed by the OS
- On success, a file descriptor (integer) is returned
- If flags contain O_CREAT, mode specifies the file creation mode
- Refer man page (“man 2 open")

Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode is many-to-one

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

Process view of file

- Per-process file descriptor table with pointer to a “file” object

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What do file descriptors 0, 1 and 2 represent?
- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- Can multiple FDs point to the same file object?

Read and Write

ssize_t read (int fd, void *buf, size_t count);

- fd → file handle
- buf → user buffer as read destination
- count → #of bytes to read
- read () returns #of bytes actually read, can be smaller than count

Read and Write

ssize_t read (int fd, void *buf, size_t count);

- fd → file handle
- buf → user buffer as read destination
- count → #of bytes to read
- read () returns #of bytes actually read, can be smaller than count

ssize_t write (int fd, void *buf, size_t count);

- Similar to read

Process view of file

- Per-process file descriptor table with pointer to a “file” object

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What do file descriptors 0, 1 and 2 represent?
- 0 → STDIN, 1 → STDOUT and 2 → STDERR
- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- Can multiple FDs point to the same file object?

lseek

off_t lseek(int fd, off_t offset, int whence);

- fd → file handle
- offset → target offset
- whence → SEEK_SET, SEEK_CUR, SEEK_END
- On success, returns offset from the starting of the file

lseek

off_t lseek(int fd, off_t offset, int whence);

- fd → file handle
- offset → target offset
- whence → SEEK_SET, SEEK_CUR, SEEK_END
- On success, returns offset from the starting of the file
- Examples

- lseek(fd, 100, SEEK_CUR) → forwards the file position by 100 bytes
- lseek(fd, 0, SEEK_END) → file pos at EOF, returns the file size
- lseek(fd, 0, SEEK_SET) → file pos at beginning of file

File information (stat, fstat)

int stat(const char *path, struct stat *sbuf);

- Returns the information about file/dir in the argument path
- The information is filled up in structure called stat

File information (stat, fstat)

int stat(const char *path, struct stat *sbuf);

- Returns the information about file/dir in the argument path
- The information is filled up in structure called stat

 struct stat sbuf;
 stat(“/home/user/tmp.txt”, &sbuf);
 printf(“inode = %d size = %ld\n”, sbuf.st_ino, sbuf.st_size);

- Other useful fields in struct stat : st_uid, st_mode (Refer stat man page)

Process view of file

- Per-process file descriptor table with pointer to a “file” object

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What do file descriptors 0, 1 and 2 represent?
- 0 → STDIN, 1 → STDOUT and 2 → STDERR
- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- The FD table is copied across fork() ⇒ File objects are shared
- On exec, open files remain shared by default
- Can multiple FDs point to the same file object?

Duplicate file handles (dup and dup2)

- The dup() system call creates a “copy” of the file descriptor oldfd
- Returns the lowest-numbered unused descriptor as the new descriptor
- The old and new file descriptors represent the same file

 int dup(int oldfd);

Duplicate file handles (dup and dup2)

int fd, dupfd;
fd = open(“tmp.txt”);
close(1);
dupfd = dup(fd); //What will be the value of dupfd?
printf(“Hello world\n”); // Where will be the output?

Duplicate file handles (dup and dup2)

int fd, dupfd;
fd = open(“tmp.txt”);
close(1);
dupfd = dup(fd); //What will be the value of dupfd?
printf(“Hello world\n”); // Where will be the output?

- Value of dupfd = 1 (assuming STDIN is open)
- “Hello world” will be written to tmp.txt file

Duplicate file handles (dup and dup2)

- Close newfd before duping the file descriptor oldfd
- dup2 (fd, 1) equivalent to

- close(1);
- dup(fd);

 int dup2(int oldfd, int newfd);

Duplicate file handles (dup and dup2)

- Lowest numbered
unused fd (i.e., 1) is used
(Assume STDOUT is
closed before)

- Duplicate descriptors
share the same file state

- Closing one file
descriptor does not
close the file

 P1
fd1 =open(“file1”) file 1

 PCB (P1)

0 1 2 3

+ dup(fd1)

Before dup()

 file 1

 PCB (P1)

0 1 2 3

After dup()

Use of dup: shell redirection

- Example: ls > tmp.txt
- How implemented?

Use of dup: shell redirection

- Example: ls > tmp.txt
- How implemented?

fd = open (“tmp.txt”)

close(1); close(2); // close STDOUT and STDERR

dup(fd); dup(fd) // 1→ fd, 2 → fd

exec(ls)

Process view of file

- Per-process file descriptor table with pointer to a “file” object

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What do file descriptors 0, 1 and 2 represent?
- 0 → STDIN, 1 → STDOUT and 2 → STDERR
- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- The FD table is copied across fork() ⇒ File objects are shared
- On exec, open files remain shared by default
- Can multiple FDs point to the same file object?
- Yes, duped FDs share the same file object (within a process)

UNIX pipe() system call

- pipe() takes array of two
FDs as input

- fd[0] is the read end of
the pipe

- fd[1] is the write end of
the pipe

- Implemented as a FIFO
queue in OS

 P1
 pipe(fd[2])

 PCB (P1)

0 1 2 fd[0] fd[1]

Pipe (FIFO Queue)

IN (Read)
OUT (Write)

UNIX pipe() with fork()

- fork() duplicates the file
descriptors

- At this point, both the
parent and the child
processes can read/write to
the pipe

 Parent
 pipe(fd[2])

 PCB (Parent)

0 1 2 fd[0] fd[1]

Pipe (FIFO Queue)

IN (Read)
OUT (Write)

 PCB (Child)

0 1 2 fd[0] fd[1]

UNIX pipe() with fork()

 Parent
 pipe(fd[2])

 PCB (Parent)

0 1 2 fd[0] fd[1]

Pipe (FIFO Queue)

IN (Read)
OUT (Write)

 PCB (Child)

0 1 2 fd[0] fd[1]

- fork() duplicates the file
descriptors

- close() one end of the pipe,
both in child and parent

- Result
- A queue between

parent and child

Shell piping : ls | wc -l

- pipe() followed by fork()
- Parent: exec(“ls”) after

making STDOUT → out fd
of the pipe (using dup)

 Parent
 pipe(fd[2])

 PCB (Parent)

0 1 2 fd[0] fd[1]

Pipe (FIFO Queue)IN (Read)

OUT (Write)

 PCB (Child)

0 1 2 fd[0] fd[1]

Shell piping : ls | wc -l

- pipe() followed by fork()
- Parent: exec(“ls”) after

making STDOUT → out fd
of the pipe (using dup)

- Child: exec(“wc”) after
closing STDIN and duping
in fd of pipe

- Result: input of “wc” is
connected to output of “ls”

 Parent
 pipe(fd[2])

 PCB (Parent)

0 1 2 fd[0] fd[1]

Pipe (FIFO Queue)IN (Read)

OUT (Write)

 PCB (Child)

0 1 2 fd[0] fd[1]

