
CS330: Operating Systems

Shared address space and concurrency

Recap: Threads

- Threads share the address space
- Low context switch overheads
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Pthread API for multi-threaded programming

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- How does OS fit into this discussion?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

- Non-deterministic output
- Why?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

counter++ in assembly
mov (counter), R1
Add 1, R1
Mov R1, (counter)

Even on a single processor system, scheduling of threads between the
above instructions can be problematic!

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}

- Assume that T1 is executing the
first iteration

- On context switch, value of R1 is
saved onto the PCB

- Thread T2 is scheduled and starts
executing the loop

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}

- T2 executes all the instructions for
one iteration of the loop, saves 1
to counter (in memory) and then,
scheduled out

- T1 is switched-in, R1 value (=1)
loaded from the PCB

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter) // counter = 1!

- T1 stores one into counter
- Value of counter should have been

two
- What if “counter++” is compiled

into a single instruction, e.g.,
- “inc (counter)” ?

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter) // counter = 1!

- T1 stores one into counter
- Value of counter should have been

two
- What if “counter++” is compiled

into a single instruction, e.g.,
- “inc (counter)” ?
- Does not solve the issue on

multi-processor systems!

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

- Non-deterministic output
- Why?
- Accessing shared variable in a

concurrent manner results in incorrect
output

Definitions
- Atomic operation: An operation is atomic if it is uninterruptible and

indivisible
- Critical section: A section of code accessing one or more shared resource(s),

mostly shared memory location(s)
- Mutual exclusion: Technique to allow exactly one execution entity to

execute the critical section
- Lock: A mechanism used to orchestrate entry into critical section
- Race condition: Occurs when multiple threads are allowed to enter the

critical section

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the

shared data causes race condition
- How does OS fit into this discussion?

Critical sections in OS

- OS maintains shared information which can be accessed from different OS
mode execution (e.g., system call handlers, interrupt handlers etc.)

- Example (1): Same page table entry being updated concurrently because of
swapping (triggered because of low memory) and change of protection
flags (because of mprotect() system call)

- Example (2): The queue of network packets being updated concurrently to
deliver the packets to a process and receive incoming packets from the
network device

Strategy to handle race conditions in OS

Contexts executing
critical sections

Uniprocessor systems Multiprocessor systems

 System calls Disable preemption Locking

System calls,
Interrupt handler

Disable interrupts Locking + Interrupt
disabling (local CPU)

Multiple interrupt
handlers

Disable interrupts Locking + Interrupt
disabling (local CPU)

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the

shared data causes race condition
- How does OS fit into this discussion?
- Concurrency issues in OS is challenging as finding the race condition itself

is non-trivial

Locking in pthread: pthread mutex

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme

Lock ADT lock_t *L1, L2;
 ….
 lock(L1)
 Critical Section
 unlock(L1)
 ….
 lock(L2)
 Critical Section
 unlock(L2)
 ….
 Lock(L1)
 Critical Section
 unlock(L2)

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?
- Hardware assisted implementations

- Use hardware synchronization
primitives like atomic operations

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?
- Hardware assisted implementations

- Use hardware synchronization
primitives like atomic operations

- Software locks are implemented without
assuming any hardware support

- Not used in practice because of high
overheads

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme

Lock: busy-wait (spinlock) vs. Waiting
 T1
 lock(L) //Acquired

Critical section

 unlock(L)

 T2

lock(L) //Lock is busy. Reschedule or Spin?

Critical section
unlock(L)

Lock: busy-wait (spinlock) vs. Waiting
 T1
 lock(L) //Acquired

Critical section

 unlock(L)

 T2

lock(L) //Lock is busy. Reschedule or Spin?

Critical section
unlock(L)

- With busy waiting, context switch overheads saved, wasted CPU cycles
due to spinning

- Busy waiting is prefered when critical section is small and the context
executing the critical section is not rescheduled (e.g., due to I/O wait)

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme

Fairness

- Given N threads contending for the lock, number of unsuccessful
attempts for lock acquisition for all contending threads should be same

Fairness

- Given N threads contending for the lock, number of unsuccessful
attempts for lock acquisition for all contending threads should be same

- Bounded wait property
- Given N threads contending for the lock, there should be an upper

bound on the number of attempts made by a given context to
acquire the lock

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock indefinitely

