
CS330: Operating Systems

Concurrency bugs

Common issues in concurrent programs

- Atomicity issues
- Failure of ordering assumption
- Deadlocks

Concurrency bugs - atomicity issues

- This code is buggy. What is the issue?

char *ptr; // Allocated before use
void T1()
{
 …
 strcpy(ptr, “hello world!”);
 ...
}

void T2()
{
 …
 if(some_condition){
 free(ptr); ptr = NULL;
 }
 …
}

Concurrency bugs - atomicity issues

- This code is buggy. What is the issue?
- T2 can free the pointer before T1 uses it.
- How to fix it?

char *ptr; // Allocated before use
void T1()
{
 …
 strcpy(ptr, “hello world!”);
 ...
}

void T2()
{
 …
 if(some_condition){
 free(ptr); ptr = NULL;
 }
 …
}

Concurrency bugs - atomicity issues

- Does the above fix (checking ptr in T1) work?

char *ptr; // Allocated before use
void T1()
{
 …
 if(ptr) strcpy(ptr, “hello world!”);
 ...
}

void T2()
{
 …
 if(some_condition){
 free(ptr); ptr = NULL;
 }
 …
}

Concurrency bugs - atomicity issues

- Does the above fix (checking ptr in T1) work?
- Not really. Consider the following order of execution:
- T1: “if(ptr)” T2: “free(ptr)” T1: “strcpy” Result: Segfault

char *ptr; // Allocated before use
void T1()
{
 …
 if(ptr) strcpy(ptr, “hello world!”);
 ...
}

void T2()
{
 …
 if(some_condition){
 free(ptr); ptr = NULL;
 }
 …
}

Concurrency bugs - ordering issues

- This code works with the assumption that line#4 of T2 is executed after
line#4 of T1

- If this ordering is violated, T1 is stuck in the while loop

1. bool pending;
2. void T1()
3. {
4. pending = true;
5. do_large_processing();
6. while (pending);
7. }

1. void T2()
2. {
3. do_some_processing();
4. pending = false;
5. some_other_processing();
6. }

Concurrency bugs - deadlocks
- Consider a simple transfer

transaction in a bank
- Where is the deadlock?

struct acc_t{
 lock_t *L;
 id_t acc_no;
 long balance;
}
void txn_transfer(acc_t *src,
 acc_t *dst, long amount)
{
 lock(src → L); lock(dst → L);
 check_and_transfer(src, dst, amount);
 unlock(dst → L); unlock(src → L);
}

Concurrency bugs - deadlocks

- Consider a simple transfer
transaction in a bank

- Where is the deadlock?
- T1: txn_transfer(iitk, cse, 10000)

- lock (iitk), lock (cse)
- T2: txn_transfer(cse, iitk, 5000)

- lock (cse), lock(iitk)

struct acc_t{
 lock_t *L;
 id_t acc_no;
 long balance;
}
void txn_transfer(acc_t *src,
 acc_t *dst, long amount)
{
 lock(src → L); lock(dst → L);
 check_and_transfer(src, dst, amount);
 unlock(dst → L); unlock(src → L);
}

Dining philosophers
P0

P4

P3P2

P1

F0F1

F3

F2

atomic_t forks[5];
Philosopher(int id)
{
 while (1) {
 think();
 acquire(forks[id]);
 acquire(forks[(id+1) % 5]);
 eat();
 release(forks[(id+1) % 5]);
 release(forks[id]);
 }
}

F4

Conditions for deadlock

- Mutual exclusion: exclusive control of resources (e.g, thread holding lock)
- Hold-and-wait: hold one resource and wait for other
- No resource preemption: Resources can not be forcibly removed from

threads holding them
- Circular wait: A cycle of threads requesting locks held by others. Specifically,

a cycle in the directed graph G (V, E) where V is the set of processes and
(v1, v2) ∈ E if v1 is waiting for a lock held by v2

All of the above conditions should be satisfied for a deadlock to occur

Solutions for deadlocks

- Remove mutual exclusion: lock free data structures
- Either acquire all resources or no resource

- trylock(lock) APIs can be used (e.g., pthread_mutex_trylock())
- Careful scheduling: Avoid scheduling threads such that no deadlock occur
- Most commonly used technique is to avoid circular wait. This can be

achieved by ordering the resources and acquiring them in a particular order
from all the threads.

Concurrency bugs - avoiding deadlocks

- Deadlock in a simple transfer
transaction in a bank

- While acquiring locks, first acquire
the lock for the account with lower
“acc_no” value

- Account number comparison
performed before acquiring the lock

struct acc_t{
 lock_t *L;
 id_t acc_no;
 long balance;
}
void txn_transfer(acc_t *src,
 acc_t *dst, long amount)
{
 lock(src → L); lock(dst → L);
 check_and_transfer(src, amount);
 unlock(dst → L); unlock(src → L);
}

Dining philosophers: breaking the deadlock
P0

P4

P3P2

P1

F0F1

F3

F2

atomic_t forks[5];
Philosopher(int id)
{
 while (1) {
 if(id == 4){
 acquire(0);
 acquire(4);
 }else{
 acquire(forks[id]);
 acquire(forks[id+1]);
 }
 …
 }

F4

Cycle breaking rule: fork
with lower value must be
acquired first.

