CS888: Introduction to Profession and Communication Skills

-- Theoretical CS

NITIN SAXENA (NITIN@CSE)

[*WITH HELP FROM INTERNET SOURCES]

2024; AUG 21, 23, 28, 30; SEP 4, 6

Proof Techniques

- Deduction
 - \bullet If $(\alpha \to \beta)$ and α , then β .
- Induction
 - \Rightarrow If $(\alpha(k) \to \alpha(k+1))$ and $\alpha(0)$, then $\forall \ell, \alpha(\ell)$.
- Contraposition
 - \bullet If $(\alpha \to \beta)$, then $(\sim \beta) \to (\sim \alpha)$.
- Contradiction
 - \bullet If $(\alpha \to False)$, then $(\sim \alpha)$.
- Diagonalization
 - Draw a matrix; contradict the diagonal!

s = 10111010011...

Common proof techniques

Proof by intimidation Trivial!

- **Proof by cumbersome notation** The theorem follows immediately from the fact that $\left|\bigoplus_{k\in\mathcal{S}}\left(\mathfrak{K}^{\mathbb{F}^{\alpha}(i)}\right)_{i\in\mathcal{U}_{k}}\right| \preccurlyeq \aleph_{1}$ when $[\mathfrak{H}]_{\mathcal{W}}\cap\mathbb{F}^{\alpha}(\mathbb{N})\neq\emptyset$.
- **Proof by inaccessible literature** The theorem is an easy corollary of a result proven in a hand-written note handed out during a lecture by the Yugoslavian Mathematical Society in 1973.
- **Proof by ghost reference** The proof my be found on page 478 in a textbook which turns out to have 396 pages.
- **Circular argument** Proposition 5.18 in [BL] is an easy corollary of Theorem 7.18 in [C], which is again based on Corollary 2.14 in [K]. This, on the other hand, is derived with reference to Proposition 5.18 in [BL].
- **Proof by authority** My good colleague Andrew said he thought he might have come up with a proof of this a few years ago. . .
- **Internet reference** For those interested, the result is shown on the web page of this book. Which unfortunately doesn't exist any more.
- Proof by avoidance Chapter 3: The proof of this is delayed until Chapter 7 when we have developed the theory even further. Chapter 7: To make things easy, we only prove it for the case z=0, but the general case in handled in Appendix C. Appendix C: The formal proof is beyond the scope of this book, but of course, our intuition knows this to be true.

facebook.com/Mathematicx

Types of statements

- Conjecture: an unproved belief.
 - P≠NP.
- * Axiom: an unprovable, defining, belief.
 - \diamond Peano's axioms [$s(\cdot)$ is called *successor*].
- Hypothesis: a testable prediction.
 - Riemann's hypothesis. Church-Turing thesis.
- Theorem: a formal statement with proof.
 - Prime number theorem.
- Corollary, Lemma, Claim, Proposition, Fact
 - diverse assertions from/towards a theorem.
- * Algorithm (proved) vs Heuristic (unproved).

Peano Axioms for natural numbers

PA1
$$\forall x (\neg(s(x) = 0))$$

PA2 $\forall x \forall y (s(x) = s(y) \rightarrow x = y)$

PA3
$$\forall x(x+0=x)$$

PA4
$$\forall x \forall y (x + s(y) = s(x + y))$$

PA5
$$\forall x(x \cdot 0 = 0)$$

PA6
$$\forall x \forall y (x \cdot s(y) = x \cdot y + x)$$

PA7
$$[A(0) \land \forall x (A(x) \rightarrow A(s(x)))] \rightarrow \forall x A(x)$$

 "Hypothesis is a tentative prediction or explanation of the relationship between two variables' It implies that there is a systematic relationship between an independent and dependent variable".

Fundamental Theorem of Arithmetic: Every positive integer has a prime factorisation, unique up to the order of the factors

Fundamental Theorem of Algebra: Every nonconstant polynomial over the field of complex numbers has at least one root

Fundamental Theorem of Calculus: For every continuous function f on an interval [a,b] the function $g(x)=\int_a^x f(t) dt$ is an antiderivative of f on (a,b)

Fundamental Theorem of Linear Algebra: The row space of a matrix is orthogonal to the nullspace of the matrix, and the dimensions add up to the number of columns of the matrix

Does God play dice?

- CS relies on probabilities.
 - Are they necessary?
- * Random sampling is a powerful tool:
 - * algorithms, systems testing, networks
 - prover-verifier protocol, proof-checking, cryptosystems
 - ML model with biased input distribution
- ❖ If I toss any coin the probability of Heads is ½.

- For an *un*biased coin, probability of Heads is ½.
- My ML model works very well on real data.

❖ My ML model decides x on dataset X with *mean*absolute-error of 10%.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |x_i - x|$$

Not only does God play dice, but... he sometimes throws them where they cannot be seen.

Stephen Hawking

- Analyzing the behavior of algorithms that make random choices
- Running time, performance
- Testing computer systems
 - Generating input/demand to test a system
- Modeling discrete structures
 - Understanding the structure of the internet or social networks

Assignment 8

https://hello.iitk.ac.in/

deadline <12pm (end of class)