
"You spelled garbage wrong."
amitabha mukerjee iit kanpur

Introduction

\square Reading:
Chapter 5 of Jurafsky \& Martin, Speech and Language Processing (2000 edition)
\square Online Coursera lecture:
http://opencourseonline.com/213/stanford-university-nature-language-processing-video-playlist-5-spelling-correction

Spelling Correction

In [2], the authors used curvatures for accurate loacation and tracking of the center of the eye.

OpenCV has cascades for faces whih have been used for detcting faces in live videos.

- course project report 2013
black crows gorge on bright mangoes in still, dustgreen trees
\rightarrow ?? "black cows" ?? "black crews" ??

Single-typing errors

\square loacation : insertion error
\square whih, detcting : deletion
\square crows -> crews : substitution
\square the -> hte : transposition

Damereau (1964) : 80\% of all misspelled words caused by single-error of these four types

Which errors have a higher "edit-distance"?

Causes of Spelling Errors

\square Keyboard Based
$\square 83 \%$ novice and 51% overall were keyboard related errors

- Immediately adjacent keys in the same row of the keyboard (50% of the novice substitutions, 31% of all substitutions)
\square Cognitive : may be more than 1-error; more likely to be real words
\square Phonetic: separate \rightarrow separate
\square Homonym : piece \rightarrow peace ; there \rightarrow their;

Steps in spelling correction

Non-word errors:
\square Detection of non-words (e.g. hte, dtection)
\square Isolated word error correction
[naive bayesian; edit distances]

Actual word (real-word) errors:
\square Context dependent error detection and correction (e.g. "three are four types of errors")
[can use language models e.g. n-grams]

Probabilistic Spell Checker

Given t , find most probable w :
Find that \hat{w} for which $P(w / t)$ is maximum,

Probabilistic Spell Checker

$\square \mathrm{Q}$. How to compute $P(w / t)$?
\square Many times, it is easier to compute $P(t / w)$

Bayesian Classification

\square Given an observation x, determine which class w it belongs to
\square Spelling Correction:
\square Observation: String of characters
\square Classification: Word intended
\square Speech Recognition:
\square Observation: String of phones
\square Classification: Word that was said

PROBABILITY THEORY

Probability theory

Apples and Oranges

Sample Space

Sample $\omega=$ Pick two fruits,
e.g. Apple, then Orange

Sample Space $\Omega=\{(\mathrm{A}, \mathrm{A}),(\mathrm{A}, \mathrm{O})$, (O,A),(O,O)\}
= all possible worlds

Event $\mathrm{e}=$ set of possible worlds, $\mathrm{e} \subseteq \Omega$

- e.g. second one picked is an apple

Learning = discovering regularities

- Regularity : repeated experiments: outcome not be fully predictable
- Probability p(e) : "the fraction of possible worlds in which e is true" i.e. outcome is event e
- Frequentist view : $\mathrm{p}(\mathrm{e})=$ limit as $\mathrm{N} \rightarrow \infty$
- Belief view: in wager : equivalent odds
$(1-p): p$ that outcome is in e, or vice versa

Why probability theory?

different methodologies attempted for uncertainty:

- Fuzzy logic
- Multi-valued logic
- Non-monotonic reasoning

But unique property of probability theory:
If you gamble using probabilities you have the best chance in a wager. [de Finetti 1931]
=> if opponent uses some other system, he's more likely to lose

Ramsay-diFinetti theorem (1931)

If agent X's degrees of belief are rational, then X's degrees of belief function defined by fair betting rates is (formally) a probability function

Fair betting rates: opponent decides which side one bets on

Proof: fair odds result in a function pr () that satisifies the Kolmogrov axioms:

Normality : $\operatorname{pr}(S)>=0$
Certainty : $\operatorname{pr}(\mathrm{T})=1$
Additivity : pr (S1 v S2 v.. $)=\Sigma(\mathrm{Si})$

Axioms of Probability

- non-negative : $p(e) \geq 0$
- unit sum $p(\Omega)=1$
i.e. no outcomes outside sample space
- additive : if e1, e2 are disjoint events (no common outcome):

$$
p(e 1)+p(e 2)=p(e 1 \cup e 2)
$$

Joint vs. conditional probability

Marginal Probability

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N} .
$$

Joint Probability

$$
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

Conditional Probability

$$
p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
$$

Probability Theory

Sum Rule

$$
\begin{aligned}
& p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j} \\
& \quad=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
\end{aligned}
$$

Product Rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

Rules of Probability

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

Example

AIDS (disease d) occurs in 0.05% of population. A new test is 99% effective in detecting AIDS, but 5% of the cases test positive even without AIDS.
10000 people are tested. How many are expected to test positive?

$$
\begin{array}{rlrl}
\mathrm{p}(\mathrm{~d}) & =0.0005 ; p(\mathrm{t} / \mathrm{d})=0.99 ; & \mathrm{p}(\mathrm{t} / \sim \mathrm{d})=0.05 \\
\mathrm{p}(\mathrm{t}) & =\mathrm{p}(\mathrm{t}, \mathrm{~d})+\mathrm{p}(\mathrm{t}, \sim \mathrm{~d}) & & {[\text { Sum Rule }]} \\
& =\mathrm{p}(\mathrm{t} / \mathrm{d}) \mathrm{p}(\mathrm{~d})+\mathrm{p}(\mathrm{t} / \sim \mathrm{d}) \mathrm{p}(\sim \mathrm{~d}) & & {[\text { Product Rule }]} \\
& =0.99 * 0.0005+0.05 * 0.9995=0.0505 \rightarrow 505+\mathrm{ve}
\end{array}
$$

Probabilistic Spell Checker

$\square \mathrm{Q}$. How to compute $P(w / t)$?
\square Many times, it is easier to compute $P(t / w)$
\square Related by product rule:

$$
\begin{aligned}
p(X, Y) & =p(Y \mid X) p(X) \\
& =p(X \mid Y) p(Y)
\end{aligned}
$$

Bayes' Theorem

$$
\begin{aligned}
p(Y \mid X) & =\frac{p(X \mid Y) p(Y)}{p(X)} \\
p(X) & =\sum_{Y} p(X \mid Y) p(Y)
\end{aligned}
$$

posterior \propto likelihood \times prior

Bayes' Theorem

Thomas Bayes (c.1750):
how can we infer causes from effects?
how can one learn the probability of a future event from how many times it had (or had not) occurred in the past?
as new evidence comes in \rightarrow probabilistic knowledge improves.
e.g. throw a die. guess is poor (1/6)
throw die again. is it > or < than prev? Can improve guess.
throw die repeatedly. can improve prob of guess quite a lot.
Hence: initial estimate (prior belief $P(h)$, not well formulated)

+ new evidence (support) - compute likelihood P (datal h)
\rightarrow improved estimate (posterior): P (h/ data)

Example

A disease d occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of d.
If you are tested +ve, what is the probability you have the disease?

$$
\begin{aligned}
& p(d / t)=p(d) \cdot p(t / d) / p(t) ; p(t)=0.0505 \\
& p(d / t)=0.0005^{*} 0.99 / 0.0505=0.0098 \text { (about } 1 \% \text {) }
\end{aligned}
$$

if 10 K people take the test, $\mathrm{E}(\mathrm{d})=5$

$$
\mathrm{FPs}=0.05 * 9995=500
$$

$$
\text { TPs }=0.99 * 5=\quad 5 . \quad \rightarrow \quad \text { only } 5 / 505 \text { have } d
$$

Precision vs Recall

Precision:
A / Retrieved Positives

Recall:
A / Actual
Positives

Example

What is the recall of the test t ?
What is its precision?
Recall $=$ fraction of actual positives that are detected by t $=0.99$

Precision = \%age of true positives among cases that t finds positive

$$
=5 / 505=.0098
$$

Features may be high-dimensional

joint distribution $\mathrm{P}(\mathrm{x}, \mathrm{y})$ varies considerably though marginals $\mathrm{P}(\mathrm{x}), \mathrm{P}(\mathrm{y})$ are identical
estimating the joint distribution requires much larger sample: $O\left(n^{k}\right)$ vs $n k$

NON-WORD SPELL CHECKER

Spelling error as classification

\square Each word w is a class, related to many instances of the observed forms x
\square Assign w given x :

$$
\hat{w}=\underset{w V}{\operatorname{argmax}} P(w \mid x)
$$

Noisy Channel : Bayesian Modeling

\square Observation x of a misspelled word
\square Find correct word w

$$
\begin{aligned}
\hat{w} & =\underset{w V}{\operatorname{argmax}} P(w \mid x) \\
& =\underset{w V}{\operatorname{argmax}} \frac{P(x \mid w) P(w)}{P(x)} \\
& =\underset{V}{\operatorname{argmax}} P(x \mid w) P(w)
\end{aligned}
$$

Non-word spelling error example

acress

Confusion Set

Confusion set of word w:
All typed forms t obtainable by a single application of insertion, deletion, substitution or transposition

Confusion set for acress

Error	Candidate Correction	Correct Letter	Error Letter	
acress	actress	t	-	deletion
acress	cress	-	a	insertion
acress	caress	ca	ac	transposition
acress	access	c	r	substitution
acress	across	o	e	substitution
acress	acres	-	s	insertion
acress	acres	-	s	insertion

Kernighan et al 90

Confusion set of word w (one edit operation away from w):
\square All typed forms tobtainable by a single application of insertion, deletion, substitution or transposition

Different editing operations have unequal weights Insertion and deletion probabilities : conditioned on letter immediately on the left - bigram model.

Compute probabilities based on training corpus of single-typing errors.

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	$\mathrm{P}($ word $)$
actress	9,321	.0000230573
cress	220	.0000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

\square Error model probability, Edit probability
\square Kernighan, Church, Gale 1990
\square Misspelled word $x=x_{1}, x_{2}, x_{3} \ldots x_{m}$
\square Correct word $w=w_{1}, w_{2}, w_{3}, \ldots, w_{n}$
$\square \mathrm{P}(\mathrm{x} \mid \mathrm{w})=$ probability of the edit
\square (deletion/insertion/substitution/transposition)

Computing error probability: confusion matrix

del[x, y]: \quad count ($x y$ typed as x) ins[x, y]: count(x typed as $x y$)
sub[x, y]: count(x typed as y) trans[x,y]: count(xy typed as $y x$)

Insertion and deletion conditioned on previous character

Confusion matrix - Deletion [Kerni90]

 Y (Deteted Letter)| X | Y (Deteted Letter) | |
| :---: |
| | a | b | c | d | e | f | g | h i | j | k | 1 | m | n | 0 | p | 9 | r | s | t | u | v | w | x | y | z |
| a | 0 | 7 | 58 | 21 | 3 | 5 | 18 | 861 | 0 | 4 | 43 | 5 | 53 | 0 | 9 | 0 | 98 | 28 | 53 | 62 | 1 | 0 | 0 | 2 | 0 |
| b | 2 | 2 | 1 | 0 | 22 | 0 | 0 | 0183 | 0 | 0 | 26 | 0 | 0 | 2 | 0 | 0 | 6 | 17 | 0 | 6 | 1 | 0 | 0 | 0 | |
| c | 37 | 0 | 70 | 0 | 63 | 0 | 0 | 24320 | 0 | 9 | 17 | 0 | 0 | 33 | 0 | 0 | 46 | 6 | 54 | 17 | 0 | 0 | 0 | 1 | |
| d | 12 | 0 | 7 | 25 | 45 | 0 | 10 | 062 | 1 | 1 | 8 | 4 | 3 | 3 | 0 | 0 | 11 | 1 | 0 | 3 | 2 | 0 | 0 | 6 | |
| e | 80 | 1 | 50 | 74 | 89 | 3 | 1 | 16 | 0 | 0 | 32 | 9 | 76 | 19 | 9 | 1 | 237 | 223 | 34 | 8 | 2 | 1 | 7 | 1 | |
| f | 4 | 0 | 0 | 0 | 13 | 46 | 0 | 079 | 0 | 0 | 12 | 0 | 0 | 4 | 0 | 0 | 11 | 0 | 8 | 1 | 0 | 0 | 0 | 1 | |
| g | 25 | 0 | 0 | 2 | 83 | 1 | 37 | $25 \quad 39$ | 0 | 0 | 3 | 0 | 29 | 4 | 0 | 0 | 52 | 7 | 1 | 22 | 0 | 0 | 0 | 1 | |
| h | 15 | 12 | 1 | 3 | 20 | 0 | 0 | $25 \quad 24$ | 0 | 0 | 7 | 1 | 9 | 22 | 0 | 0 | 15 | 1 | 26 | 0 | 0 | 1 | 0 | 1 | |
| i | 26 | 1 | 60 | 26 | 23 | 1 | 9 | 01 | 0 | 0 | 38 | 14 | 82 | 41 | 7 | 0 | 16 | 71 | 64 | 1 | 1 | 0 | 0 | 1 | |
| j | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
| k | 4 | 0 | 0 | 1 | 15 | 1 | 8 | 15 | 0 | 1 | 3 | 0 | 17 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | |
| 1 | 24 | 0 | 1 | 6 | 48 | 0 | 0 | 0217 | 0 | 0 | 211 | 2 | 0 | 29 | 0 | 0 | 2 | 12 | 7 | 3 | 2 | 0 | 0 | 11 | |
| m | 15 | 10 | 0 | 0 | 33 | 0 | 0 | 142 | 0 | 0 | 0 | 180 | 7 | 7 | 31 | 0 | 0 | 9 | 0 | 4 | 0 | 0 | 0 | 0 | |
| n | 21 | 0 | 42 | 71 | 68 | 1 | 160 | 0191 | 0 | 0 | 0 | 17 | 144 | 21 | 0 | 0 | 0 | 127 | 87 | 43 | 1 | 1 | 0 | 2 | |
| o | 11 | 4 | 3 | 6 | 8 | 0 | 5 | 04 | 1 | 0 | 13 | 9 | 70 | 26 | 20 | 0 | 98 | 20 | 13 | 47 | 2 | 5 | 0 | 1 | |
| p | 25 | 0 | 0 | 0 | 22 | 0 | 0 | 1215 | 0 | 0 | 28 | 1 | 0 | 30 | 93 | 0 | 58 | 1 | 18 | 2 | 0 | 0 | 0 | 0 | |
| q | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | |
| r | 63 | 4 | 12 | 19 | 188 | 0 | 11 | 5132 | 0 | 3 | 33 | 7 | 157 | 21 | 2 | 0 | 277 | 103 | 68 | 0 | 10 | 1 | 0 | 27 | |
| s | 16 | 0 | 27 | 0 | 74 | 1 | 0 | 18231 | 0 | 0 | 2 | 1 | 0 | 30 | 30 | 0 | 4 | 265 | 124 | 21 | 0 | 0 | 0 | 1 | |
| t | 24 | 1 | 2 | 0 | 76 | 1 | 7 | 49427 | 0 | 0 | 31 | 3 | 3 | 11 | 1 | | 203 | 5 | 137 | 14 | 0 | 4 | 0 | 2 | |
| u | 26 | 6 | 9 | 10 | 15 | 0 | 1 | 028 | 0 | 0 | 39 | 2 | 111 | 1 | 0 | 0 | 129 | 31 | 66 | 0 | 0 | 0 | 0 | 1 | |
| v | 9 | 0 | 0 | 0 | 58 | 0 | 0 | 031 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| w | 40 | 0 | 0 | 1 | 11 | 1 | 0 | 1115 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | |
| x | 1 | 0 | 17 | 0 | 3 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 1 | |
| y | 2 | 1 | 34 | 0 | 2 | 0 | 1 | 01 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 17 | 1 | 0 | 0 | 1 | 0 | 0 | |
| z | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| @ | 20 | 14 | 41 | 31 | 20 | 20 | 7 | 620 | 3 | 6 | 22 | 16 | 5 | 5 | 17 | 0 | 28 | 26 | 6 | 2 | 1 | 24 | 0 | 0 | |

Confusion matrix : substitution

$\operatorname{sub}[\mathbf{X}, \mathrm{Y}]=$ Substitution of \mathbf{X} (incorrect) for \mathbf{Y} (correct)

X												(c)	t)												
	a	b	c	d	f	g	h	i	j	k	1	m	n	0	p	9	r	s	t	u	v	w	x	y	
a	0	0	7	1342	0	0	21	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5)
b	0	0	9	92	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	
c	6	5	0	160	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	
d	1	10	13	012	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	
c	388	0	3	110	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	0	5	2	0	0	0		4	1	0	0	0	6	4	12	0	0	2	0	0)
g	4	1	11	11	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	
h	1	8	0	30	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	90	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	41	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	4	0	0	3
1	2	10	1	40	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	
m	1	3	7	80	2	0	6	0	0	4	4		180	0	6	0	0	9	15	13		2	2	3	
n	2	7	6	53	0	1	19	1	0	4	35	78	0	0	7	0	28	,	7)	0	1	2	0	2
0	91	1	1	3116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	
p	0	11	1	20	6	5	0	2	9	0	2	7	6	15	0	0		3	6	0	4	1	0	0	
q	0	0	1	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
r	0	14	0	$30 \quad 12$	2	2		2	0	5		4	20	1	14	0	0	12	22		0	0	1	0	
s	11	8	27	3335	4	0	1	0	1	0	27	0	6			0	14	0	15	0	0	5	3	20	
t	3	4	9	427	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	
u	20	0	0	044	0	0	0	64	0	0	0	0	2	43	0	0	4	0		0	0	2	0	8	
v	0	0	7	$0 \quad 0$	3	0	0	0	0	0	1	0	0	1	0	0		8		0	0	0	0	0	
w	2	2	1	01	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	
x	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	
y	0	0	2	015	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
	0	0	0	70	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	

Channel model

Channel model for acress

Candidate	Correct	Error Correction	$\mathrm{x} \mid \mathrm{w}$	$\mathrm{P}(\mathrm{x} \mid$ word $)$
Letter	Letter			
actress	t	-	$\mathrm{c} \mid \mathrm{ct}$.000117
cress	-	a	$\mathrm{a} \mid \#$.00000144
caress	ca	ac	$\mathrm{ac} \mid \mathrm{ca}$.00000164
access	c	r	$\mathrm{r} \mid \mathrm{c}$.000000209
across	o	e	$\mathrm{e} \mid \mathrm{o}$.0000093
acres	-	s	$\mathrm{es} \mid \mathrm{e}$.0000321
acres	-	s	$\mathrm{ss} \mid \mathrm{s}$.0000342

Noisy channel probability for acress

Candida te Correcti on	Corre ct Letter	Erro r Lett er	$x \mid w$	$\mathrm{P}(\mathrm{x} \mid$ word)	P(word)	10^{9} * $\mathrm{P}(\mathrm{x} \mid \mathrm{w}) \mathrm{P}(\mathrm{w})$
actress	t	-	$\mathrm{c} \mid \mathrm{ct}$. 000117	. 0000231	2.7
cress	-	a	a\|\#	. 00000144	$\begin{aligned} & .00000054 \\ & 4 \end{aligned}$. 00078

caress ca ac ac|ca . 00000164 . 00000170 . 0028

access	c	r	$\mathrm{r} \mid \mathrm{c}$.000000209	.0000916
.019					
across	o	e	$\mathrm{e} \mid \mathrm{O}$.0000093	.000299
acres	-	s	es\|e	.0000321	.0000318
acres	-	s	ss\|s	.0000342	.0000318

Using a bigram language model

"a stellar and versatile acress whose combination of sass and glamour..."\square Counts from the Corpus of Contemporary American English with add-1 smoothing
$\square \mathrm{P}($ actress|versatile $)=.000021$
$\square \mathrm{P}($ across|versatile $)=.000021$
$\mathrm{P}($ whose|actress $)=.0010$
$\mathrm{P}($ whose \mid across $)=.000006$
$\square \mathrm{P}\left(\right.$ "versatile actress whose") $=.000021^{*} .0010=210 \times 10^{-10}$
$\square \mathrm{P}\left(\right.$ "versatile across whose") $=.000021^{*} .000006=1 \times 10^{-10}$

Multiple Typing Errors

Multiple typing errors

\square Measures of string similarity
How similar is "intension" to "execution"?
\square For strings of same length - Hamming distance
\square Edit distance (A,B):
minimum number of operations that transform string A into string B
\square ins, del, sub, transp : Damerau -Levenshtein distance

Minimum Edit Distance

\square Each edit operation has a cost
\square Edit distance based measures
\square Levnishtein-Damreau distance
\square How similar is "intension" to "execution"?

Three views of edit operations

Alignment
All views \rightarrow
cost $=5$ edits

If subst / transp is not allowed
[their cost $=2$] \rightarrow
cost= 8 edits
Operation
List

Trace

$$
\begin{aligned}
& i \mathrm{n} t \in \mathrm{n} \varepsilon \mathrm{t} i \circ \mathrm{n} \\
& \varepsilon \in \mathrm{x} e \mathrm{c} u \mathrm{t} \text { i } \circ \mathrm{n}
\end{aligned}
$$

Levenshtein Distance

$\square \operatorname{len}(A)=m ; \operatorname{len}(B)=n$
\square create $\mathrm{n} \times \mathrm{m}$ matrix : A along x -axis, B along y
$\square \operatorname{cost}(\mathrm{i}, \mathrm{j})=$ Levenshtein distance ($\mathrm{A}[0 . \mathrm{i}], \mathrm{B}[0 . . \mathrm{j}]$)
= cost of matching substrings
\square Dynamic programming : solve by decomposition.
\square Dist-matrix $(i, j)=\min \{$ costs of insert from (i-1,j) or (i,j-1); or cost of substitute from (i-1, j-1) \}

Levenshtein Distance

n	9	10	11	10	11	12	11	10	9	8
o	8	9	10	9	10	11	10	9	8	9
i	7	8	9	8	9	10	9	8	9	10
t	6	7	8	7	8	9	8	9	10	11
n	5	6	7	6	7	8	9	10	11	12
e	4	5	6	5	6	7	8	9	10	11
t	3	4	5	6	7	8	9	10	11	12
n	2	3	4	5	6	7	8	8	10	11
i	1	2	3	4	5	6	7	8	9	10
\#	0	1	2	3	4	5	6	7	8	9
	$\#$	e	x	e	c	u	t	i	o	n

WORD-FROM-DICTIONARY SPELL CHECKER

WORD-FROM-DICTIONARY SPELL CHECKER

Real-word spelling errors

\square...leaving in about fifteen minuets to go to her house.
\square The design an construction of the system...
\square Can they lave him my messages?
\square The study was conducted mainly be John Black.
$\square \mathbf{2 5 - 4 0 \%}$ of spelling errors are real words Kukich 1992

Solving real-world spelling errors

\square For each word in sentence
\square Generate candidate set

- the word itself
- all single-letter edits that are English words
- words that are homophones
\square Choose best candidates
- Noisy channel model
- Task-specific classifier

Noisy channel for real-word spell correction

\square Given a sentence $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{n}}$
\square Generate a set of candidates for each word w_{i}
\square Candidate $\left(w_{1}\right)=\left\{w_{1}, w_{1}^{\prime}, w_{1}{ }_{1}, w^{\prime \prime \prime}{ }_{1}, \ldots\right\}$
\square Candidate $\left(w_{2}\right)=\left\{w_{2}, w_{2}^{\prime}, w^{\prime \prime}{ }_{2}, w^{\prime \prime \prime}{ }_{2}, \ldots\right\}$
\square Candidate $\left(w_{n}\right)=\left\{w_{n}, w_{n}^{\prime}, w_{n}^{\prime \prime}, w^{\prime \prime \prime}{ }_{n}, \ldots\right\}$
\square Choose the sequence W that maximizes $\mathrm{P}(\mathrm{W})$

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Norvig's Python Spelling Corrector

How to Write a Spelling Corrector
http://norvig.com/spell-correct.html

Simplification: One error per sentence

\square Out of all possible sentences with one word replaced
$\square w_{1}, w^{\prime \prime}{ }_{2}, w_{3}, w_{4} \quad$ two off thew
$\square w_{1}, w_{2}, w_{3}^{\prime}, w_{4} \quad$ two of the
$\square \mathbf{w}^{\prime \prime \prime}{ }_{1}, W_{2}, W_{3}, W_{4} \quad$ too of thew
\square Choose the sequence W that maximizes $\mathrm{P}(\mathrm{W})$

Where to get the probabilities

\square Language model

- Unigram
\square Bigram
- Etc
\square Channel model
\square Same as for non-word spelling correction
\square Plus need probability for no error, $\mathrm{P}(\mathrm{w} \mid \mathrm{w})$

Probability of no error

\square What is the channel probability for a correctly typed word?
$\square \mathrm{P}($ "the" \mid "the" $)=1$ - probability of mistyping
\square Depends on typist, task, etc.
$\square .90$ (1 error in 10 words)
$\square .95$ (1 error in 20 words) \leftarrow value used, say
-. 99 (1 error in 100 words)

- . 995 (1 error in 200 words)

Peter Norvig's "thew" example

				10^{9}	
\mathbf{x}	w	$\mathrm{x} \mid \mathrm{w}$	$\mathrm{P}(\mathrm{x} \mid \mathrm{w})$	$\mathrm{P}(\mathrm{w})$	$\mathrm{P}(\mathrm{x} \mid \mathrm{w}) \mathrm{P}(\mathrm{w})$
thew	the	ew\|e	0.000007	0.02	144
thew	thew		0.95	0.00000009	90

Choosing 0.99 instead of 0.95 (1 mistyping in 100 words) \rightarrow "thew" becomes more likely

State of the art noisy channel

\square We never just multiply the prior and the error model
\square Independence assumptions \rightarrow probabilities not commensurate
\square Instead: weight them

$$
\hat{w}=\underset{w V}{\operatorname{argmax}} P(x \mid w) P(w)
$$

\square Learn λ from a validation test set (divide training set into training + validation)

Phonetic error model

\square Metaphone, used in GNU aspell
\square Convert misspelling to metaphone pronunciation

- "Drop duplicate adjacent letters, except for C."

■ "If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter."

- "Drop ' B ' if after ' M ' and if it is at the end of the word"
- ...
\square Find words whose pronunciation is 1-2 edit distance from misspelling's
\square Score result list
\square Weighted edit distance of candidate to misspelling
- Edit distance of candidate pronunciation to misspelling pronunciation

Improvements to channel model

\square Allow richer edits (Brill and Moore 2000)

- ent \rightarrow ant
$\square \mathrm{ph} \rightarrow \mathrm{f}$
$\square \mathrm{le} \rightarrow$ al
\square Incorporate pronunciation into channel (Toutanova and Moore 2002)

Channel model

\square Factors that could influence p (misspelling |word)
\square The source letter
\square The target letter
\square Surrounding letters
\square The position in the word
\square Nearby keys on the keyboard
\square Homology on the keyboard
\square Pronunciations
\square Likely morpheme transformations

Nearby keys

Classifier-based methods

\square Instead of just channel model and language model
\square Use many more features - wider context build a classifier (machine learning).
\square Example:
whether/weather
■ "cloudy" within +- 10 words

- _ to VERB
- _ or not
\square Q. How can we discover such features?

Candidate generation

\square Words with similar spelling
\square Small edit distance to error
\square Words with similar pronunciation
\square Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

\square Minimal edit distance between two strings, where edits are:
\square Insertion

- Deletion
\square Substitution
\square Transposition of two adjacent letters

Candidate generation

$\square 80 \%$ of errors are within edit distance 1
\square Almost all errors within edit distance 2
\square Also allow insertion of space or hyphen
\square thisidea \rightarrow this idea
\square inlaw \rightarrow in-law

Language Model

\square Language modeling algorithms :

- Unigram, bigram, trigram
\square Formal grammars
\square Probabilistic grammars

FINITE STATE MORPHOLOGY

Computational morphology

Analysis

Generation

hung

Two challenges

\square Morphotactics
\square Words are composed of smaller elements that must be combined in a certain order:
■ piti-less-ness is English

- piti-ness-less is not English
\square Phonological alternations
\square The shape of an element may vary depending on the context
- pity is realized as piti in pitilessness
- die becomes dy in dying

Morphology is regular (=rational)

\square The relation between the surface forms of a language and the corresponding lexical forms can be described as a regular relation.
\square A regular relation consists of ordered pairs of strings.

- leaf+N+Pl: leaves hang+V+Past : hung
\square Any finite collection of such pairs is a regular relation.
\square Regular relations are closed under operations such as concatenation, iteration, union, and composition.
- Complex regular relations can be derived from simple relations.

Morphology is finite-state

\square A regular relation can be defined using the metalanguage of regular expressions.

- [\{talk\} | \{walk\} | \{work\}]
- [\%+Base:0 | \%+SgGen3:s | \%+Progr:\{ing\} |
\%+Past:\{ed\}];
\square A regular expression can be compiled into a finitestate transducer that implements the relation computationally.

Compilation

Regular expression

- [\{talk\} | \{walk\} | \{work\}]
- [\%+Base:0 | \%+SgGen3:s | \%+Progr:\{ing\} | \%+Past:\{ed\}];

Finite-state transducer

Generation

> work+3rdSg --> works

"You spelled garbage wrona."
amitabha mukerjee iit kanpur

HCl issues in spelling

\square If very confident in correction
\square Autocorrect
\square Less confident
\square Give the best correction
\square Less confident
\square Give a correction list
\square Unconfident
\square Just flag as an error

Noisy channel based methods

\square IBM
\square Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context based spelling correction. Information Processing and Management, 23(5), 517-522
\square AT\&T Bell Labs
\square Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

