

CS 671 NLP NAIVE BAYES AND SPELLING

amitabha mukerjee iit kanpur

"You spelled garbage wrong."

Introduction

□ Reading:

Chapter 5 of Jurafsky & Martin, Speech and Language Processing (2000 edition)

Online Coursera lecture:

http://opencourseonline.com/213/stanforduniversity-nature-language-processing-videoplaylist-5-spelling-correction

Spelling Correction

In [2], the authors used curvatures for accurate loacation and tracking of the center of the eye.

OpenCV has cascades for faces whih have been used for detcting faces in live videos.

- course project report 2013

black crows gorge on bright mangoes in still, dustgreen trees

→ ?? "black cows" ?? "black crews" ??

Single-typing errors

- loacation : insertion error
- whih , detcting : deletion
- □ crows -> crews : substitution
- □ the -> hte : transposition

Damereau (1964) : 80% of all misspelled words caused by single-error of these four types

Which errors have a higher "edit-distance"?

Causes of Spelling Errors

- Keyboard Based
 - 83% novice and 51% overall were keyboard related errors
 - Immediately adjacent keys in the same row of the keyboard (50% of the novice substitutions, 31% of all substitutions)
- Cognitive : may be more than 1-error; more likely to be real words
 - **\square** Phonetic : separate \rightarrow separate
 - **\square** Homonym : piece \rightarrow peace ; there \rightarrow their;

Steps in spelling correction

Non-word errors:

Detection of non-words (e.g. hte, dtection)
 Isolated word error correction

 [naive bayesian; edit distances]

Actual word (real-word) errors:

 Context dependent error detection and correction (e.g. "three are four types of errors")

[can use language models e.g. n-grams]

Probabilistic Spell Checker

Given t, find most probable w : Find that \hat{w} for which P(w|t) is maximum,

$$\hat{w} = \operatorname{argmax}_{w \in V} P(w|x)$$

$$\lim_{w \in V} \lim_{w \in V} \lim_{w \in V} \min_{w \in V} \min_{w \in V} \min_{w \in V} \min_{w \in V} \max_{w \in V}$$

Probabilistic Spell Checker

\Box Q. How to compute P(w|t) ?

Many times, it is easier to compute
 P(t|w)

Bayesian Classification

- 9
- Given an observation x, determine which class w it belongs to
- □ Spelling Correction:
 - Observation: String of characters
 - Classification: Word intended
- Speech Recognition:
 - Observation: String of phones
 - Classification: Word that was said

PROBABILITY THEORY

Probability theory

Apples and Oranges

Sample Space

Sample ω = Pick two fruits, e.g. Apple, then Orange Sample Space Ω = {(A,A), (A,O), (O,A),(O,O)} = all possible worlds

Event e = set of possible worlds, $e \subseteq \Omega$

• e.g. second one picked is an apple

Learning = discovering regularities

- **Regularity** : repeated experiments: outcome not be fully predictable
- **Probability** p(e) : "the fraction of possible worlds in which e is true" i.e. outcome is event e
- Frequentist view : $p(e) = \text{limit as } N \rightarrow \infty$
- Belief view: in wager : equivalent odds
 (1-p):p that outcome is in e, or vice versa

Why probability theory?

different methodologies attempted for uncertainty:

- Fuzzy logic
- Multi-valued logic
- Non-monotonic reasoning

But **unique property** of probability theory:

- If you gamble using probabilities you have the best chance in a wager. [de Finetti 1931]
- => if opponent uses some other system, he's more likely to lose

Ramsay-diFinetti theorem (1931)

- If agent X's degrees of belief are **rational**, then X 's degrees of belief function defined by **fair betting** rates is (formally) a probability function
- Fair betting rates: opponent decides which side one bets on
- Proof: fair odds result in a function pr () that satisifies the Kolmogrov axioms:
 - Normality : $pr(S) \ge 0$
 - Certainty : pr(T)=1
 - Additivity : pr (S1 v S2 v..)= Σ (Si)

Axioms of Probability

- non-negative : $p(e) \ge 0$
- unit sum $p(\Omega) = 1$

i.e. no outcomes outside sample space

- additive : if e1, e2 are disjoint events (no common outcome):

p(e1) + p(e2) = p(e1 U e2)

Joint vs. conditional probability

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Probability Theory

Sum Rule $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$ $= \sum_{j=1}^{L} p(X = x_i, Y = y_j)$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

Rules of Probability

Example

- AIDS (disease *d*) occurs in 0.05% of population. A new test is 99% effective in detecting AIDS, but 5% of the cases test positive even without AIDS.
- 10000 people are tested. How many are expected to test positive?

p(d) = 0.0005 ; p(t/d) = 0.99 ; p(t/~d) = 0.05 p(t) = p(t,d) + p(t,~d)[Sum Rule] = p(t/d)p(d) + p(t/~d)p(~d)[Product Rule] $= 0.99^*0.0005 + 0.05 * 0.9995 = 0.0505 \rightarrow 505 + ve$

Probabilistic Spell Checker

\Box Q. How to compute P(w|t) ?

Many times, it is easier to compute P(t/w)

Related by product rule:
 p(X,Y) = p(Y | X) p(X)
 = p(X | Y) p(Y)

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∞ likelihood x prior

Bayes' Theorem

Thomas Bayes (c.1750): how can we infer causes from effects? how can one learn the probability of a future event from how many times it had (or had not) occurred in the past?

as new evidence comes in → probabilistic knowledge improves. e.g. throw a die. guess is poor (1/6) throw die again. is it > or < than prev? Can improve guess. throw die repeatedly. can improve prob of guess quite a lot.

Hence: initial estimate (*prior* belief *P(h)*, not well formulated)
+ new evidence (support) – compute likelihood *P (data| h)*→ improved estimate (*posterior*): *P (h| data*)

Example

A disease *d* occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of *d*.

If you are tested +ve, what is the probability you have the disease?

 $p(d/t) = p(d) \cdot p(t/d) / p(t) ; p(t) = 0.0505$

p(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098 (about 1%)

if 10K people take the test, E(d) = 5
 FPs = 0.05 * 9995 = 500
 TPs = 0.99 * 5 = 5. → only 5/505 have d

Precision vs Recall

What is the recall of the test t?

What is its precision?

Recall = fraction of actual positives that are detected by t = 0.99

Precision = %age of true positives among cases that t finds positive

= 5/505 = .0098

Features may be high-dimensional

joint distribution P(x,y) varies considerably though marginals P(x), P(y) are identical

estimating the joint distribution requires much larger sample: $O(n^k)$ vs nk

NON-WORD SPELL CHECKER

Spelling error as classification

Each word w is a class, related to many instances of the observed forms x

 \square Assign w given x :

$$\hat{w} = \operatorname*{argmax}_{w \mid V} P(w \mid x)$$

Noisy Channel : Bayesian Modeling

30

- Observation x of a misspelled word
- Find correct word w

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$
$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w)$$

Non-word spelling error example

acress

Confusion Set

Confusion set of word w:

All typed forms t obtainable by a single application of insertion, deletion, substitution or transposition

Confusion set for acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	-	deletion
acress	cress	-	а	insertion
acress	caress	са	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion
acress	acres	-	S	insertion

Kernighan et al 90

- **Confusion set** of word w (one edit operation away from w):
 - All typed forms t obtainable by a single application of insertion, deletion, substitution or transposition
- Different editing operations have unequal weights
- Insertion and deletion probabilities : conditioned on letter immediately on the left – bigram model.
- Compute probabilities based on training corpus of single-typing errors.

Unigram Prior probability

35

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

Error model probability, Edit probability
 Kernighan, Church, Gale 1990

- Misspelled word $x = x_1, x_2, x_3... x_m$ ■ Correct word $w = w_1, w_2, w_3, ..., w_n$
- P(x|w) = probability of the edit
 (deletion/insertion/substitution/transposition)
Computing error probability: confusion matrix

- del[x,y]: count(xy typed as x)
- ins[x,y]: count(x typed as xy)
- sub[x,y]: count(x typed as y)
- trans[x,y]: count(xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix – Deletion [Kerni90]

@

del[X, Y] = Deletion of Y after X

K	Y (Deleted Letter)																									
	а	ь	с	d	е	f	g	h	i	j_	k	1	m	n	o	р	q	r	s	t	u	v	w	х	У	Z
a	0	7	58	21	3	5	18	8	61	0	4	43	5	53	0	9	0	98	28	53	62	1	0	0	2	0
b	2	2	1	0	22	0	0	0	183	0	0	26	- 0	0	2	0	0	6	17	0	6	1	0	0	0	0
C	37	0	70	0	63	0	0	24	320	0	9	17	0	0	33	0	0	46	6	54	17	0	0	0	1	0
d	12	0	7	25	45	0	10	0	62	1	1	8	4	3	3	0	0	11	1	0	3	2	0	0	6	0
e	80	1	50	74	89	3	1	1	6	0	0	32	- 9	76	19	9	1	237	223	34	8	2	1	7	1	- 0
f	4	0	0	0	13	46	0	0	79	0	0	12	0	0	4	0	0	11	0	8	1	0	0	0	1	0
g	25	0	0	2	83	1	37	25	39	0	0	3	0	29	4	0	0	52	7	1	22	0	0	0	1	0
h	15	12	1	3	20	0	0	25	24	0	0	7	1	9	22	0	0	15	1	26	0	0	1	0	1	0
i	26	1	60	26	23	1	9	0	1	0	0	38	14	82	41	7	0	16	71	64	1	1	0	0	1	7
j	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0
k	4	0	0	1	15	1	8	1	5	0	1	3	0	17	0	0	0	1	5	0	0	0	1	0	0	0
1	24	0	1	6	48	0	0	0	217	0	0	211	2	0	29	0	0	2	12	7	3	2	0	0	11	0
m	15	10	0	0	33	0	0	- 1	42	0	0	0	180	7	7	31	0	0	9	0	- 4	0	0	0	0	0
n	21	0	42	71	68	1	160	0	191	0	0	0	17	144	21	0	- 0	0	127	87	43	1	1	0	2	- 0
0	11	4	3	6	8	0	5	0	4	1	0	13	9	70	26	20	0	98	20	13	47	2	5	0	1	0
P	25	0	0	0	22	0	0	12	15	0	0	28	1	0	30	93	0	58	1	18	2	0	0	0	0	- 0
q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	- 0
r	63	4	12	19	188	0	11	- 5	132	0	3	33	7	157	21	2	0	277	103	68	0	10	1	0	27	- 0
s	16	0	27	0	74	1	0	18	231	0	0	2	1	0	30	30	0	- 4	265	124	21	0	0	0	1	- 0
t	24	1	2	0	76	1	7	49	427	0	0	31	3	3	11	1	0	203	- 5	137	14	0	4	0	2	- 0
u	26	6	9	10	15.	0	1	0	28	0	0	39	2	111	1	0	0	129	31	66	0	0	0	0	1	0
v	9	0	0	0	58	0	0	0	31	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0	1	-0
w	40	0	0	1	11	1	0	11	15	0	0	1	0	2	2	0	0	2	24	0	0	0	0	0	0	-0
x	1	0	17	0	3	0	0	1	0	0	0	0	0	0	0	6	0	0	0	5	0	0	0	0	1	- 0
у	2	1	34	0	2	0	1	0	1	0	0	1	2	1	1	1	0	0	17	1	0	0	1	0	0	0
z	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
a)	20	14	41	31	20	20	7	- 6	20	3	6	22	16	- 5	- 5	17	- 0	28	26	6	2	1	24	0	0	2

Confusion matrix : substitution

x	sub[X, Y] = Substitution of X (incorrect) for Y (correct)																									
A	а	b	с	đ	e	f	p	ħ	i	i	k	1	m	n	0	p	a	r	s	t	u	v	w	x	v	7.
8	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	$\frac{1}{0}$	<u> </u>	35	9	9	0	1	0	-5	$\overline{\overline{0}}$
b	ŏ	0	9	9	2	2	3	1	0	Õ	0	5	11	5	Õ	10	Õ	0	2	í	Ó	Ő	8	Õ	Õ	0
c	6	5	Ó	16	Ō	9	5	Ō	Ŏ	Ō	1	0	7	9	ĩ	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
с	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
ĥ	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	-, 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	- 0	- 7	0	0	0	- 0	0	0	0	- 7	- 5	- 0	0	0	0	- 2	21	- 3	- 0	- 0	0	0	3	- 0

Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Channel model for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	а	a #	.00000144
caress	са	ac	ac ca	.00000164
access	С	r	r c	.00000209
across	0	е	elo	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

42

Candida te Correcti	Corre ct Letter	Erro r Lett er	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	clct	.000117	.0000231	2.7
cress	-	а	a #	.00000144	.00000054 4	.00078
caress	са	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.00000209	.0000916	.019
across	0	е	elo	.0000093	.000299	2.8
acres	-	S	esle	.0000321	.0000318	1.0
acres	-	S	sss	.0000342	.0000318	1.0

Using a bigram language model

- "a stellar and versatile acress whose combination" of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021
 - P(across|versatile) =.000021

P(whose|actress) = .0010

P(whose|across) = .000006

 $P("versatile actress whose") = .000021*.0010 = 210 \times 10^{-10}$

 $P("versatile across whose") = .000021*.000006 = 1 x10^{-10}$

Multiple Typing Errors

Multiple typing errors

- Measures of string similarity How similar is "intension" to "execution"?
- □ For strings of same length Hamming distance
- □ Edit distance (A,B):
 - minimum number of operations that transform string A into string B
 - ins, del, sub, transp : Damerau –Levenshtein distance

Minimum Edit Distance

- Each edit operation has a cost
- Edit distance based measures
 - Levnishtein-Damreau distance
- How similar is "intension" to "execution"?

Three views of edit operations

47

	Trace	intention //// IIII execution
\Box All views \rightarrow	Alignment	inten ϵ tion ϵ execution
cost = 5 edits		delete i 🕳 intention
	Operation	substitute n by e 🔔 n t e n t i o n
If subst / transp is	List	substitute t by x 🕳 etention
not allowed	2000	insertu 🕳 exention
[their cost = 2] →		substitute n by c 🕳 exenution
rost= 8 edits		execution

Levenshtein Distance

- \Box len(A) = m; len (B) = n
- create n × m matrix : A along x-axis, B along y
- cost(i,j) = Levenshtein distance (A[0..i], B[0..j])
 = cost of matching substrings

Dynamic programming : solve by decomposition.
 Dist-matrix(i,j) = min { costs of insert from (i-1,j) or (i,j-1); or cost of substitute from (i-1, j-1) }

Levenshtein Distance

49

n	9	10	11	10	11	12	11	10	9	8
0	8	9	10	9	10	11	10	9	8	9
i	7	8	9	8	9	10	9	8	9	10
t	6	7	8	7	8	9	8	9	10	11
n	5	6	7	6	7	8	9	10	11	12
e	4	5	6	5	6	7	8	9	10	11
t	3	4	5	6	7	8	9	10	11	12
n	2	3	4	5	6	7	8	8	10	11
i	1	2	3	4	5	6	7	8	9	10
#	0	1	2	3	4	5	6	7	8	9
	#	e	X	e	c	u	t	i	0	n

WORD-FROM-DICTIONARY SPELL CHECKER

WORD-FROM-DICTIONARY SPELL CHECKER

Real-word spelling errors

- □ …leaving in about fifteen *minuets* to go to her house.
- □ The design *an* construction of the system...
- □ Can they *lave* him my messages?
- The study was conducted mainly be John Black.

25-40% of spelling errors are real words Kukich 1992

Solving real-world spelling errors

For each word in sentence

- Generate candidate set
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
- Choose best candidates
 - Noisy channel model
 - Task-specific classifier

Noisy channel for real-word spell correction

- \Box Given a sentence $w_1, w_2, w_3, \dots, w_n$
- Generate a set of candidates for each word w_i
 - **Candidate** $(w_1) = \{w_1, w'_1, w''_1, w''_1, ...\}$
 - **Candidate** $(w_2) = \{w_2, w'_2, w''_2, w''_2, ...\}$
 - □ Candidate(w_n) = { w_n , w'_n , w''_n , w''_n , ...}

Choose the sequence W that maximizes P(W)

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Norvig's Python Spelling Corrector

How to Write a Spelling Corrector

http://norvig.com/spell-correct.html

Simplification: One error per sentence

- Out of all possible sentences with one word replaced

••••

Choose the sequence W that maximizes P(W)

Where to get the probabilities

- Language model
 - Unigram
 - Bigram
 - Etc
- Channel model
 - Same as for non-word spelling correction
 - Plus need probability for no error, P(w|w)

Probability of no error

60

- What is the channel probability for a correctly typed word?
- □ P("the" | "the") = 1 probability of mistyping

Depends on typist, task, etc.

- **.**90 (1 error in 10 words)
- .99 (1 error in 100 words)
- .995 (1 error in 200 words)

Peter Norvig's "thew" example

61

					10 ⁹
X	W	xw	P(x w)	P(w)	P(x w)P(w)
thew	the	ew e	0.000007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.000008	0.000004	0.03
thew	thwe	ew we	0.000003	0.0000004	0.0001

Choosing 0.99 instead of 0.95 (1 mistyping in 100 words) \rightarrow "thew" becomes more likely

State of the art noisy channel

62

- We never just multiply the prior and the error model
- Independence assumptions → probabilities not commensurate
- Instead: weight them

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(x \mid w) P(w)'$$

Learn λ from a validation test set
 (divide training set into training + validation)

Phonetic error model

Metaphone, used in GNU aspell

- Convert misspelling to metaphone pronunciation
 - "Drop duplicate adjacent letters, except for C."
 - "If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter."
 - "Drop 'B' if after 'M' and if it is at the end of the word"
 - **...**
- Find words whose pronunciation is 1-2 edit distance from misspelling's
- Score result list
 - Weighted edit distance of candidate to misspelling
 - Edit distance of candidate pronunciation to misspelling pronunciation

Improvements to channel model

- Allow richer edits (Brill and Moore 2000)
 - \Box ent \rightarrow ant
 - \Box ph \rightarrow f
 - \square le ightarrow al
- Incorporate pronunciation into channel (Toutanova and Moore 2002)

Channel model

- □ Factors that could influence p(misspelling|word)
 - The source letter
 - The target letter
 - Surrounding letters
 - The position in the word
 - Nearby keys on the keyboard
 - Homology on the keyboard
 - Pronunciations
 - Likely morpheme transformations

Nearby keys

Classifier-based methods

Instead of just channel model and language model

- Use many more features wider context build a classifier (machine learning).
- □ Example:

67

- whether/weather
 - "cloudy" within +- 10 words
 - to VERB
 - or not

Q. How can we discover such features?

Candidate generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters

Candidate generation

- 70
- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2
- Also allow insertion of space or hyphen
 thisidea → this idea
 inlaw → in-law

Language Model

- Language modeling algorithms :
 - Unigram, bigram, trigram
 - Formal grammars
 - Probabilistic grammars

FINITE STATE MORPHOLOGY
Computational morphology

Two challenges

Morphotactics

Words are composed of smaller elements that must be combined in a certain order:

piti-less-ness is English

piti-ness-less is not English

Phonological alternations

- The shape of an element may vary depending on the context
 - pity is realized as piti in pitilessness
 - die becomes dy in dying

Morphology is regular (=rational)

- The relation between the surface forms of a language and the corresponding lexical forms can be described as a regular relation.
- A regular relation consists of ordered pairs of strings.
 leaf+N+PI: *leaves* hang+V+Past : hung
- □ Any finite collection of such pairs is a regular relation.
- Regular relations are closed under operations such as concatenation, iteration, union, and composition.
 - Complex regular relations can be derived from simple relations.

Morphology is finite-state

 A regular relation can be defined using the metalanguage of regular expressions.

```
[{talk} | {walk} | {work}]
[%+Base:0 | %+SgGen3:s | %+Progr:{ing} |
%+Past:{ed}];
```

 A regular expression can be compiled into a finitestate transducer that implements the relation computationally.

Compilation

Regular expression

- $\Box [{talk} | {walk} | {work}]$
- [%+Base:0 | %+SgGen3:s | %+Progr:{ing} | %+Past:{ed}];

Finite-state transducer

Generation

work+3rdSg --> works

"You spelled garbage wrong."

CS 671 NLP NAÏVE BAYES AND SPELLING

amitabha mukerjee iit kanpur

HCI issues in spelling

- If very confident in correction
 - Autocorrect
- Less confident
 - Give the best correction
- Less confident
 - Give a correction list
- Unconfident
 - Just flag as an error

Noisy channel based methods

 Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991.
 Context based spelling correction. *Information Processing* and Management, 23(5), 517–522

AT&T Bell Labs

Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210