
Playing Atari Games with Deep Reinforcement Learning 1

Playing Atari Games with Deep Reinforcement Learning

Varsha Lalwani (varshajn@iitk.ac.in)

Masare Akshay Sunil (amasare@iitk.ac.in)

IIT Kanpur

CS365A

Artificial Intelligence Programming

Course Project

Instructor: Prof. Amitabha Mukherjee

Playing Atari Games with Deep Reinforcement Learning 2

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Acknowledgements

We would like to thank Prof. Amitabha Mukerjee for giving us this opportunity to work

on this project. His valuable guidance and various insights throughout have helped us a lot in

completing the project. We would also like to thank Mr. Ashudeep for mentoring us and helping

us move forward with the project whenever we got stuck. We also would like to thank Prof.

Vinay P. Namboodiri for providing us with the GPU required for the project.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 3

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Abstract

In this project, we attempt to learn control policies of Atari games using reinforcement

learning. The model is a convolutional neural network, trained with a variant of Q-learning,

taking raw pixels as inputs and giving value function estimating future rewards as output. We

applied this method to play 3 Atari games from the Arcade Learning Environment[1], with no

adjustment of the architecture or learning algorithm. Moreover, we also tried to play two similar

games (space invaders and phoenix) using one single agent trained to play one of those games

(phoenix).

Motivation

General Game Playing is the branch of Artificial Intelligence that deals with playing

multiple games using a single agent. For many years, it has been possible for a computer to play

a single game by using some specially designed algorithm for that particular game. But these

algorithms were useless outside their context. For example, an algorithm for chess cannot play

checkers. Hence, we need General Game Playing agents to play multiple games. In this project

we are trying to implement a deep reinforced learning based agent to play multiple video games.

Previous Work

There have been many attempts in past few years to design general game players using

several techniques. The first successful Deep Reinforcement Learning based General Game

Player [2] was implemented by Mnih et. al. of DeepMind Technologies which was motivated by

the success of model free reinforcement learning approach in a backgammon playing program.

Since then, there have been various similar attempts to implement the algorithm. Ours is one

such attempt to replicate their work on 3 different games.

We have also experimented by trying to play two similar games with an agent trained on

one of these games and we achieved success according to our hypothesis that the agent should be

able to play fairly well as compared to the untrained agent.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 4

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning

Our methodology is similar to the paper by Mnih et. al. So, we are using a convolutional

neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output

is a value function estimating future rewards. This approach can be divided into three major

parts:

1. Convulational Neural Networks

2. Q-Learning

3. Emulation Interface

We can broadly describe our working algorithm as follows:

 Initialize the game Emulation Environment Interface

 Take the screenshots of the game

 Pre-process the screenshots

 Use CNNs to extract the features from the screenshots

 Choose any action from the list of possible actions according to current state

 Observe reward and save it to memory

 Repeat and Train

Convolutional Neural Networks

The figure below explains our CNN very well. We have used CNNs for feature extraction

from the screenshot of the game state. We take 4 consecutive images at a time and they form the

nodes of the Input layer of our CNN. The images are takes as 2D matrices and are then

convolved with linear filters. Multiple images are accounted for by weight matrices. Our Neural

Network finally assigns the expected reward value to each possible action. The images come is

as 210x160 pixels. We crop the top 50 pixels as they are just HUD to get a 160x160 image which

is then downscaled to 84x84 pixels. Our first layer of filters are 8x8 in size and are multiplied

with an step size of 4 pixels. Hence, a node in the resulting layer is 20x20 pixels in size. The next

filter set is 4x4 in size with a step of 2 pixels resulting in a node of 9x9 pixels. Finally, we have a

fully connected neural network that outputs all possible actions of the given state.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 5

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 1. Neural Network Structure[3]

Figure 2. Second Filter set for the game ‘Breakout’

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 6

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 3. First Filter set for the game ‘Breakout’

Q-Learning

In a reinforcement learning model, an agent takes actions in an environment with the goal

of maximizing a cumulative reward. The basic reinforcement learning model consists of: a set of

environment states S; a set of actions A; rules of transitioning between states; rules that

determine the scalar immediate reward of a transition; and rules that describe what the agent

observes.

Figure 4. Reinforcement Learning[4]

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 7

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Q-Learning is a model-free form of Reinforcement Learning. If S is a set of states, A is a

set of actions, is the discount factor, is the step size. Then we can understand Q-Learning by

this Algorithm [5]:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑸(𝒔, 𝒂) 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦

 𝑅𝑒𝑝𝑒𝑎𝑡 (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒):

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑺

 𝑅𝑒𝑝𝑒𝑎𝑡 (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒):

𝐶ℎ𝑜𝑜𝑠𝑒 𝒂 𝑓𝑟𝑜𝑚 𝒔 𝑢𝑠𝑖𝑛𝑔 𝑝𝑜𝑙𝑖𝑐𝑦 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑸

 (𝑒. 𝑔. ∈ −𝑔𝑟𝑒𝑒𝑑𝑦)

 𝑇𝑎𝑘𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝒂, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝒓, 𝒔′

 𝑸′(𝒔′, 𝒂′) < − − 𝑸(𝒔, 𝒂) + 𝜶[𝒓 + 𝜸.𝒎𝒂𝒙 𝑸(𝒔′, 𝒂′) − 𝑸(𝒔, 𝒂)]

 𝒔 < − − 𝒔′

 𝑢𝑛𝑡𝑖𝑙 𝒔 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

Arcade Learning Environment

As our emulation interface we are using Arcade Learning Environment (ALE). It is built

on top of Stella, an open-source Atari 2600 emulator. It is built in C++ and supports nearly 50

games. It can also output the end of the game signal for the supported games. It also supports

FIFO queues for input to the games and taking output from it. This results in a smooth learning

experience of our agent.

Implementation

For the Implementation of the project we needed a powerful GPU and a lot of memory.

So, the system we used hosted a Nvidia 760GTX CUDA compatible GPU and 8 gigabytes of

memory. Even with such a powerful system, we faced a lot of problem with direct

implementation of cuda-convnet2 library as given in the paper of replicating deep mind[6]. So,

instead we chose an indirect implementation of this library with Theano library of Python[7]. The

Implementation of Arcade Learning Environment was pretty easy as it is open source[8]. Other

libraries we used were: SDL for display, RL-GLUE for communication between CNN and ALE,

numpy and pylearn2 for training.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 8

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Breakout

The very first game we trained was Breakout. We chose breakout due to its simple nature.

It has only two states: dead or alive, has only two actions: right or left, and it is very simple to

create the reward function: positive value for alive states and a large negative one for dead states.

Initially, we tested a random agent on the game, the results of which are in the figure below.

Figure 5. Scores on the game ‘Breakout’ by random agent.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 9

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

We then trained the agent to 26 epochs, and we achieved an average score of 48 on the

26th epoch. The graph below shows the average score and average loss at each epoch.

Figure 5. Average Score and Average Loss at each Epoch for the game ‘Breakout’

Space Invaders

Space Invaders is another game on Atari 2600. Like Breakout, it was also used in training

in the paper by Mnih et. al. But unlike Breakout, Space Invaders is a lot more complex. It has 3

different actions: Left, Right and Shoot. There are enemies to shoot and who in return shoot at

us. But, the complexity mostly increases due to increase in action set. So, the training graph for

this game is not exactly monotonously increasing. During training, it randomly trains with a

specific restricted action set for different epochs. So, if the left or right moment is restricted in

any epoch, its performance is badly affected. Still, after 39 Epochs of training the average score

bumped up from nearly 160 in random agent to 428.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 10

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 6. Average Score and Average Loss at each Epoch for the game ‘Space Invaders’

Figure 7. First Filter set in the CNN of the game ‘Space Invaders’

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 11

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 8. Second Filter set in CNN for the game ‘Space Invaders’

Phoenix

Phoenix is a game on Atari 2600, which is similar to the

game of Space Invaders. It has the same 3 actions: Left, Right

and Shoot, with a similar gameplay. It has a new gameplay

element though - a shield which temporarily protects against

enemy attack. Due to more than two action, it suffers the same

problem as Space Invaders during Training. We chose this game

because it was not implemented in the paper by Mnih et. al.

Initially, the random agent gave a score of nearly 370 and after

27 epochs we got to a high of 2180 average score. On some

runs, we even managed to hit near the 4000 mark.

Figure 9. Score of 3800 on Phoenix.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 12

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 10. Average Score and Average Loss at each Epoch for the game ‘Phoenix’

Figure 11. First Filter set in the CNN of the game ‘Phoenix’

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 13

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Figure 12. First Filter set in the CNN of the game ‘Phoenix’

Inter-Play

What we mean by inter-play is training the agent on one game and testing it out on

another game. The results will be particularly good in case the two games are very similar. So,

we tried is out on Space Invaders and Phoenix. We trained on Space Invaders and tested on

Phoenix. The results we obtained weren’t the best, but were significantly better than the random

agent. The scores of each episode of Phoenix played on an agent trained on Space Invaders to 39

Epochs is given below in the figure, each of which is significantly higher than the 370 average of

the random agent. To train the 27 Epochs of Phoenix takes nearly 15-16 hours on our machine.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 14

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Given the high time complexity of the training process, using an already available data of similar

game can be very helpful.

Figure 13. Scores of Phoenix on agent trained on Space Invaders

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 15

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Conclusion

The AI agent designed can learn to play various Atari games without any tweaks in the

architecture or algorithm. It becomes better as we train it more: increasing average scores per

epoch. Also, as we observed, the player trained on one game is performing significantly better

than the random player on other similar games.

Future Extension

One general game player trained on multiple games simultaneously and tested on various

different games individually to see if one can avoid training the agent for every game. It probably

won’t be as good as the individually trained agents, but it sure would save many resources in

training the agents.

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

Playing Atari Games with Deep Reinforcement Learning 16

Game Videos at: http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

References

1. M.G. Bellemare, Y. Naddaf, J Veness and M. Bowling. (2013).The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial

Intelligence Research 47, Pages 253-279.

2. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, Martin Riedmiller. (2013). Playing Atari With Deep Reinforcement

Learning. NIPS Deep Learning Workshop, 2013.

3. Kristjan Korjus, Ilya Kuzovkin, Ardi Tampuu, Taivo Pungas. (2013). Replicating the

Paper “Playing Atari with Deep Reinforcement Learning”. Technical Report, Introduction

to Computational Neuroscience, University of Tartu.

4. http://webdocs.cs.ualberta.ca/~sutton/book/ebook/figtmp7.png

5. http://www.cse.unsw.edu.au/~cs9417ml/RL1/algorithms.html

6. https://github.com/kristjankorjus/Replicating-DeepMind

7. https://github.com/spragunr/deep_q_rl

8. http://www.arcadelearningenvironment.org/downloads/

http://home.iitk.ac.in/~amasare/cs365/project/dqrl.html

