Constructing Knowledge Graph from Unstructured Text

Kundan Kumar

Siddhant Manocha

Image Source: www.ibm.com/smarterplanet/us/en/ibmwatson/

MOTIVATION

The first section of the State State

Text

Video How to jointly acquire knowledge from all these sources?

Images

Speech/sounds

Artificial worlds?

MOTIVATION

MOTIVATION

PROBLEM STATEMENT

KNOWLEDGE GRAPH

http://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtraction.pdf

KNOWLEDGE GRAPH

A Discourse Control of Statements of Science String, Sci.

Involvement of Tumor Necrosis Factor Receptor associated Protein 1 (TRAP1) in Apoptosis Induced by #-Hydroxyisovalerylshikonin*

> Reserved for publication, April 78, 2004, and as evided them, Sold 37, 2004 Protected, 2007 Property of Print, April 70, 2004, Sold 10, 2014 and 2014

Tutula Manufal, Generys (Bons, Teslebire, Royle), Manye Barie, Resirfs Fori, Shiger Yalagir, Sachike Aujuste, Teslebr Schaysma-Imare, and Karayawa Nakaya

6-Signi de section color problematio (d. 1997). - a comparament problematio d'avant de la color de

The basic distribution of the product of the basic of the second second

IE

Subject	Relation	Object	
p53	is_a	protein	
Bax	is_a	protein	
p53	has_function	apoptosis	
Bax	has_function	induction	
apoptosis	involved_in	cell_death	
Bax	is_in	mitochondrial outer membrane	
Bax	is_in	cytoplasm	
apoptosis	related_to	caspase activation	

textual abstract: summary for human structured knowledge extraction: summary for machine

) Q

¢,+

http://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtraction.pdf

QUESTION ANSWERING

EXISTING KNOWLEDGE BASES

Knowledge graphs

EXISTING KNOWLEDGE BASES

Supervised Models:

- Learn classifiers from +/- examples, typical features: context words + POS, dependency path between entities, named entity tags
- Require large number of tagged training examples
- Cannot be generalized

Semi-Supervised Models:

- Bootstrap Algorithms: Use seed examples to learn initial set of relations
- Generate +ve/-ve examples to learn a classifier
- Learn more relations using this classifier

Distant Supervision:

- Existing knowledge base + unlabeled text generate examples
- Learn models using this set of relations

OUR APPROACH

Bootstrapping Relations using Distributed Word Vector Embedding

1) Word that occur in similar context lie close together in the word embedding space.

2) Word Vectors is semantically consistent and capture many linguistic properties (like 'capital city', 'native language', 'plural relations')

3) Obtain word vectors from unstructured text (using Google word2vec, Glove, etc)

4) Exploit the properties of the manifold to obtain binary relations between entities

ALGORITHM

SIMILARITY METRIC

Image Source: A survey on relation extraction, Nguyen Bach, Carnegie Mellon University

KERNEL BASED APPROACHES

DEPENDENCY KERNELS

1. 'his actions in Brcko', and

- 1. 'his \rightarrow actions \leftarrow in \leftarrow Brcko', and
- 2. 'his arrival in Beijing'.2. 'his \rightarrow arrival \leftarrow in \leftarrow Beijing'.1.Actual Sentences2. Dependency Graph
- 1. $x = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7]$, where $x_1 = \{\text{his, PRP, PERSON}\}, x_2 = \{\rightarrow\}, x_3 = \{\text{actions, NNS, Noun}\}, x_4 = \{\leftarrow\}, x_5 = \{\text{in, IN}\}, x_6 = \{\leftarrow\}, x_7 = \{\text{Brcko, NNP, Noun, LOCATION}\}$
- Kernel: K(x,y)=3×1×1×1×2×1×3 = 18
- 2. $y = [y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6 \ y_7]$, where $y_1 = \{$ his, PRP, PERSON $\}$, $y_2 = \{\rightarrow\}$, $y_3 = \{$ arrival, NN, Noun $\}$, $y_4 = \{\leftarrow\}$, $y_5 = \{$ in, IN $\}$, $y_6 = \{\leftarrow\}$, $y_7 = \{$ Beijing, NNP, Noun, LOCATION $\}$

3.Kernel Computation

PRELIMINARY RESULTS

Word Vector Embedding: Wikipedia Corpus

PRELIMINARY RESULTS (wikipedia corpus)

			Positive relations learnt		Negative Relations learnt	
Seed Examples for capital relationship			Country	Capital	Country	Capital
Country	Capital		Nepal	Kathmandu	Bhutan	Sikkim
India	Delhi					
Bangladesh	Dhaka	Afghanistan		Kabul	Algeria	Tunisia
			Thailand	Bangkok	Burma	Jalpaiguri
			Russia	Moscow	Kuwait	Cairo

PRELIMINARY RESULTS (google news corpus)

Seed Examples

Country	Capital		
India	Delhi		
Bangladesh	Dhaka		

Country	Capital		
Nepal	Kathmandu		
Pakistan	Islamabad		

Positive Relations Learned

Country	Capital		
Srilanka	Tamil		
Bhutan	Sikkim		
Burma	Jalpaiguri		
LTTE	tamil		

Negative Relations Learned

References

1)Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.

2) Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. <u>Distributed Representations of</u> <u>Words and Phrases and their Compositionality</u>. In Proceedings of NIPS, 2013.

3)Eugene Agichtein Luis Gravano. Snowball: Extracting Relations from Large Plain-Text Collections. In *Proceedings* of the *fifth ACM* conference on Digital libraries, June 2000

Questions!

CBOW MODEL

- input vector represented as 1-of-V encoding
- Linear sum of input vectors are projected onto the projection layer
- Hierarchical Softmax layer is used to ensure that the weights in the output layer are between 0<=p<=1
- Weights learnt using backpropagation
- The projection matrix from the projection layer to the hidden layer give the word vector embeddings

WORD VECTOR MODEL

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

What words have embeddings closest to a given word? From Collobert $et \ al. \ (2011)$

WORD VECTOR MODEL

Relationship	Example 1	Example 2	Example 3	WOMAN
France - Paris big - bigger	Italy: Rome small: larger	Japan: Tokyo cold: colder	Florida: Tallahassee quick: quicker	AUNT
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	MAN
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	UNCLE
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	QUEEN
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	7
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	KING
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	KING
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	From Mikolov et al
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	
		7		(2013a)

Relationship pairs in a word embedding. From Mikolov et al. (2013b).

KERNEL BASED APPROACHES

Figure 1: The shallow parse representation of the the sentence "John Smith is the chief scientist of the Hardcom Corporation". The types "PNP", "Det", "Adj", and "Prep" denote "Personal Noun Phrase", "Determiner", "Adjective", and "Preposition", respectively.