

Character Recognition from

Google Street View Images

Indian Institute of Technology

Course Project Report – CS365A

By

Ritesh Kumar (11602) and Srikant Singh (12729)

Under the guidance of

Professor Amitabha Mukerjee

i

Abstract

Character recognition is the conversion of printed or handwritten text (present

in an image) into machine – encoded format, so it can stored efficiently,

searched and edited more quickly or used as an input to text mining and other

such applications. Our project aims to recognize characters from natural

images obtained from Google Street View. We have tried multiple algorithms

to come forward with the most suitable one for this problem. We have

employed Matlab and Python as the tools to implement these algorithms.

ii

Acknowledgement

We would like to express our sincere thanks to our Instructor-In-Charge

Professor Amitabha Mukerjee for allowing us the opportunity to undertake a

project in his course. It was a quite a good learning experience as in a subject

like Artificial Intelligence, not everything can be covered in class and hence a

project gives us the opportunity to explore many interesting concepts.

Sincerely,

Ritesh Kumar (11602),

Srikant Singh (12729),

Indian Institute of Technology, Kanpur.

iii

Table of Contents

Introduction ... 1

Motivation .. 1

Related Works .. 2

Dataset ... 2

Rejected Methods ... 3

Methodology ... 3

Feature Extraction .. 3

Vector of Pixel Values ... 3

Histogram of Oriented Gradients (HOG) .. 3

Learning on Feature Vectors ... 4

Random Forests .. 4

K-Nearest Neighbors with LOOF-CV ... 5

Support Vector Machine ... 5

Results and Analysis ... 6

Future Prospects .. 7

References ... 7

1

Introduction

Our project aims at identifying characters of the English dataset (which

comprises of the English alphabets and Hindu-Arabic numerals) from natural

images (which includes images taken using handheld devices) obtained from

Google Street View. The dataset has images of different sizes, along with

different camera angles, lighting environments and image qualities. We have

further reduced all the images to a size of 20*20px for further processing. Now

our approach to this problem involves two steps, firstly we implement feature

extraction from the images, then using the so obtained features, we train our

model to predict the class of the given image.

Figure 1 – Some of the Images which we use in our project

src: www.ee.surrey.ac.uk

Motivation

In the recent years, Google street view has increased in popularity manifold.

With its increased usage, it becomes important to have a proper method to

recognise images from Google street view. Such an implementation would

have many benefits, like if we can recognize and tag such images, a lot of extra,

useful information can be added to Google Maps. A good image recognition

method can act as a precursor to many applications, like Image-to-Speech App

for visually impaired people, which would help them to navigate and recognise

their destinations. It can also be used to track various signs, hoardings and

advertisements, by recognising their images and maintaining a count on them.

2

 Related Works

Though a new avenue for research, many interesting works have been done in

this field. One of the works involved text detection using sliding window

followed by SVM and text recognition using Tesseract (an open source OCR),

with a nominal success rate [1] .Another work involved the DistBelief [2]

implementation of deep neural networks operating directly on the image

pixels [3] .A very interesting work involved using 2 types of neural network – A

thin deep neural network (Google Net) and a flat shallow neural net (Alex

Network), with quite good results and high accuracies [4].

Dataset

We have used a very widely available and popular dataset known “Chars74K

dataset” [5], which contains characters of both English character set as well as

of the Kannada script. We however have based our project solely on the

English character set. Furthermore as we are only interested in images

obtained from Google Street view, our work mainly revolves on the set of 7705

characters obtained from natural images. The dataset is divided 62 classes (0-

9, A-Z and a-z).

Figure 2 – Images from the Chat74k dataset

3

Rejected Methods

 Use of Decision tree as a classifier – Decision tree was considered to be

used for classification, but was rejected on the grounds that, as they

grow deeper, they start learning irregular patterns and show over fitting,

a problem which arises due to the tendency for decision trees to show

low bias and high variance.

 Use of SIFT for feature extraction – We also used SIFT with SVM for

image recognition, but on a very constrained and small subset of the

dataset, we were able to get an accuracy around 50%. As we increased

the subset, the accuracy started dropping manifold. Also we had trouble

running the algorithm for the full dataset as we ran into memory errors

and issues. Hence the use of SIFT along with SVM was rejected.[6]

Methodology

Feature extraction –

1. Image pixel vector - The simplest method to extract image features was

to use the image pixels themselves. We used the intensity of image

pixels as a feature vector to train the learning models. We used the

greyscale version of the image for processing. This method is quite fast

as compared to other feature extraction methods but is one of the low

accuracy models for feature extraction.

2. Histogram of Oriented Gradients – HOG is a feature descriptor in which

we basically divide the image into cells and find the local histograms of

gradient features over pixels in each cell, and after normalization the

descriptors are fed into the learning model. We used the

“extractHOGFeatures” function of MATLAB which returns a visual output

to help determine the right cell size to use. We used cell sizes of 2*2,

4*4 and 8*8. As is visible in Figure 3, the best intuitive cell size is 2*2,

but as we decrease the cell size, our computation complexity increases,

while on larger cell sizes, enough information is not encoded for

training.[7] Hence we used the cell size to be 4*4.

4

Figure 3 – Image extraction using HOG

Feature extraction –

We used three different techniques for training our model on the features that
we obtained by our feature extraction methods –

1. Random Forests – They are extensions of decision trees incorporating
averaging between multiple decision trees to give better results. They
show lower variance than decision tree and there is no over fitting with
increase in number of classifiers. The implementation of random forest
was done by importing the “sklearn.ensemble” module in python. It
gives better accuracies than LOOF-CV and the SVM classifier, while using
common features.[10] We used n_estimator = 100 and ‘entropy’ criterion
for our random forest model as it gives better accuracy.[8]

Figure 4 – Learning using a Random Forest

src: www.iis.ee.ic.ac.uk/~tkkim/iccv09_tutorial

5

2. K – nearest neighbours with LOOF-CV – LOOF-CV is present in many
standard machine learning libraries, but here we take the advantage of
the fact that LOOF-CV is particularly fast with k-NN. In LOOF-CV we
simply remove one data point to test and train on rest, so it is just k-fold
cross validation with k = 1. The k-Nearest Neighbour algorithm gives the
most common label of the k nearest training point, which is then
assigned to the test point. We tried different values of k in k-NN but k =
1 produced the best results. We used Euclidean distance function in k-
NN.[8]

Figure 5 – k-NN classifier

src: http://www.statistics4u.com/fundstat_eng/cc_classif_knn.html

3. Support Vector Machine – Support vector machines are supervised
learning that learn data, recognise patterns in them and based on those
classify them. It is a non-probabilistic binary linear classifier. SVMs can
also perform non-linear classification by using kernel methods implicitly
mapping their inputs into high-dimensional feature spaces.[9] We used
the “fitcecoc” function from Statistics Toolbox™ to create a multiclass
classifier using binary SVMs and finally “predict” was used to predict the
class of the test images.[7] We got an accuracy around 55% for a
constrained subset of the dataset and the accuracy increased as we
increased the subset to the full dataset.

Figure 4 – Scatterplot showing a linear SVM’s decision boundary

src: http://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Linear-svm-

scatterplot.svg

6

Results and Analysis

Method used Accuracy
Pixel value vector – Random forest 46.368%

HOG – SVM 77.029%

Pixel value vector – kNN 43.586%
Table 1 – Methods vs. Accuracies

 Though random forests have been empirically proven [10] to be better

than SVMs in classification, we can see that HOG-SVM gives quite better

results than Pixel Value Vector – Random forests.

 From this we can safely conclude that HOG is a better feature extractor

than Pixel Value Vector and feature extraction plays a significant role in

final character recognition.

 The dataset we had didn’t have any contextual information, as we only

had single characters to be processes rather than text regions. Our

methods suffered from declining accuracies as such, due to conflicting

characters such as ‘0’ , ‘O’ and ‘D’; ‘1’ , ’I’ (uppercase ‘i’)and ‘l’

(lowercase ‘L’).

Figure 5 [4]

 In some cases (on manual inspection of misclassified images), it was

found that cursive images were prone to be misclassified. For instance,

this can happen if the classifier confuses a curly, cursive ‘4’ with a similar

looking ‘2’, as shown in the figure below.

Figure 6

7

Future Prospect

 To solve the problem of declining accuracies and conflicting characters,

we can implement boosting. Boosting allows the use of more than one

classifiers, and in case of a conflict, we would have probabilities for an

image to be classified as any particular character, which would be

different for each classifier and a weighted sum across those can help us

in resolving the conflicts.

 We intend to use neural networks as a classifier, as many character

recognition algorithms have been developed using neural nets, among

which deep convolution nets have a special mention. With the proper

feature extractor, very good accuracies (of about 97.28% using

GoogleNet and 91.22% using AlexNet)[4] have been obtained.

References

[1] Lintern, James. "Recognizing Text in Google Street View

Images." Statistics 6 (2008).

[2] Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in

Neural Information Processing Systems. 2012.

[3] Goodfellow, Ian J., et al. "Multi-digit number recognition from street

view imagery using deep convolutional neural networks." arXiv preprint

arXiv:1312.6082 (2013)

[4] Wang, Guan, and Jingrui Zhang. "Recognizing Characters From Google

Street View Images."

[5] http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

[6] https://github.com/shackenberg/Minimal-Bag-of-Visual-Words-Image-

Classifier

[7] http://in.mathworks.com/help/vision/examples/digit-classification-

using-hog-features.html

[8] https://www.kaggle.com/c/street-view-getting-started-with-julia

[9] http://en.wikipedia.org/wiki/Support_vector_machine

[10] Caruana, Rich, and Alexandru Niculescu-Mizil. "An empirical

 comparison of supervised learning algorithms." Proceedings of the 23rd
 international conference on Machine learning. ACM, 2006.

