Predicting Ocean Health One Plankton at a time

Abhilash Kumar 12014 Peeyush Agarwal 12475

Motivation

Critically important to our ecosystem

- Represent the bottom few levels of food chain
- Play an important role in ocean's carbon cycle

Population levels are an ideal measure of the health of world's oceans and ecosystems

Traditional methods are

- Time consuming
- Cannot scale for large-scale studies

Could take a year or more to manually analyze the imagery volume captured in a single day

A better approach :

- Use underwater imagery sensors for capturing images
- Automated image classification using machine learning

To create an algorithm that given an image, assigns class probabilities for various plankton classes.

Dataset

Provided for Data Science Bowl competition

Contains 121 Classes

Consists of :

- 30,000 labeled images
- 130,000 test images

Challenges

- Many different species with varying size
- Image can have any orientation within 3-D space
- Ocean replete with detritus that have no taxonomic identification
- Sometimes difficult for even experts because of noise
- Presence of "unknown" classes

Methodology

Computer Vision

What the computer sees

How to determine features given the image?

Features for vision

GIST

Domain specific hand engineered features like

- Ratio of glob's width and height
- Shape/Size

Learning the features!

Using Neural Networks (Inspired by nature)

Somatosensory cortex learns to see

One Learning Algorithm Hypothesis

Neural Networks

Convolutional Neural Networks

Neural Networks with :

Local Connectivity

Same weight for neurons in a depth slice

Layers used to build CNN

Convolutional Layer

Image

Convolved Feature

Polling Layer

1	1	2	4			
5	6	7	8	Max Pool with 2x2 filters and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

RELU Layer

Apply elementwise activation function such as max(0,x)

FC (i.e. Fully Connected) Layer

As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

CNN Example

[LeNet-5, LeCun 1980]

Typical CNNs for vision look like

- [CONV-RELU-POOL]xN,[FC-RELU]xM, SOFTMAX
- [CONV-RELU-CONV-RELU-POOL]xN,[FC-RELU]xM,SOFTMAX

Work already done

- Explored the dataset
- Learnt to use AWS and used it to train a CNN
- Read some theory
- Tried Random Forest with hard coded features*

Future Work

- Designing the Network
- Preventing Overfitting
 - Data Augmentation
 - Dropouts
- Benchmarking against SIFT

Why data augmentation?

References

- Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11),2278 - 2324,1998
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. 2012.
- Andrew Ng's Deep Learning Lectures

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

- CS231n : CNN for Visual Recognition Lectures

http://vision.stanford.edu/teaching/cs231n/index.html

Questions?