Predicting ocean health One plankton at a time

Overview

Motivation

- Planktons are critically important to our ecosystem
- Their population levels are an ideal measure of the health of world's oceans

Objective

• To create an algorithm that given an image, assigns class probabilities for various plankton classes.

Dataset

- 121 plankton classes
- 30,000 training images and 130,000 test images

Challenges

- Many different species with varying size
- Image can have any orientation within 3-D space
- Ocean replete with detritus
- Presence of "unknown" classes

Methodology

Feature Extraction

- SIFT, GIST, HOG
- Feature Learning
- Learning Algorithm
- SVM
- SoftMax

Random Forest

- Extract portion of image containing plankton
- Re size images to 25x25
- Extract Width to Height ratio
- Use pixels and extracted feature for training

Figure 1: Class separation based on width to height ratio

Abhilash Kumar and Peeyush Agarwal

Department of Computer Science and Engineering, IIT Kanpur

Convolutional Neural Network

Figure 2: CNN Architecture

Network Description

- Similar to Hinton's ImageNet architecture [1]
- 8 weight layers (5 conv. and 3 fully connected)
- Dropout in 2 layers to prevent overfitting
- ReLU activation function

Training error rate with ReLU(solid line) and Figure 3: tanh(dashed line) neurons [1]

Maxout Network

Conv1 4x4x32 Stride 2 Pad 0

Maxout

Conv2 4x4x64 Stride 2 Pad 3 Maxout

Conv3 3x3x128 Stride 2 Pad 3 Maxout

Conv4 3x3x128 Stride 3 Pad 3 Maxout

Conv5 3x3x256 Stride 2 Pad 2 Maxout

Figure 5: Maxout Network Architecture

Network Description

- Network similar to Bengio's Dropout Network [2]
- 9 weight layers (6 conv. and 3 fully connected)
- Maxout activation function

Figure 6: Graphical depiction of how maxout activation function can implement ReLU, absolute value rectifier, and approximate the quadratic activation function [2]

-		ľ

- Input Size : 48x48
- Offline Data Augmentation
- 20 minutes training time on AWS GPU

onv5	Full6	Full7	Full8	• Offl • Rea
ride 1	256 Dropout	256 Dropout	121 SoftMax	
Pooling				

raining

Run for 45 epochs

Figure 4: Training error v/s number of epochs

Training

Input Size : 48x48 Real time Data Augmentation 9 hours training time on AWS GPU 20 M 22 M 20 M 20 M 20 M

The network learns concepts like edge detectors, corner detectors etc. in addition to plankton specific filters.

All evidences seem to suggest that training a deeper network with more data could improve our accuracy even further. The winning team in this contest obtained a classification accuracy of 81.52%. However, their winning model took 70 hours to train on an approx. 3 times more powerful GPU. Training on such large scales is currently infeasible for us.

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

[2] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. *arXiv preprint arXiv:1302.4389*, 2013.

We acknowledge the authors of CXXNET, Theano and pylearn2 libraries. We also thank kaggle for providing dataset and random forest benchmark code. We also acknowledge Prof. Mukerjee for his guidance.

Data Augmentation

ine data augmentation

time data augmentation

Figure 8: Histogram of size of training data for different classes

Results

Method	Accuracy	
Random Forest	44%	
CNN	61%	
CNN + Dropout	65%	
Maxout	71%	

Table 1: Accuracy obtained for different methods

References

Acknowledgements