
• The Continuous Bag of Words model proposed by Mikolov is similar to the

feed forward NNLM where the non-linear hidden layer is removed and the

projection layer is shared for all words.

.

Source: http://arxiv.org/pdf/1411.2738v1.pdf

• Hierarchal softmax : Firstly a Huffman tree is build based on word

frequencies. As a result each word is a leaf of that tree, and enjoys a path

from the root to itself. The probability is calculated using the formula, where

w is a word in the vocabulary

• Vocabulary size is V
• Hidden layer size is N
• Input Vector : One-hot encoded vector, i.e. only one

node of { 𝑋 1 , 𝑋 2 , … . , 𝑋 𝑣 } is 1 and others 0

• Weights between the input layer and the output layer
is represented by a VxN matrix W

• h=𝑥𝑇𝑊 = 𝑣𝑊𝑖

• 𝑣𝑊𝑖 is the vector representation of the input word 𝑤𝑖

• Given a context, formed by words 𝑥1, 𝑥2, … . , 𝑥𝑐
• While computing the hidden layer output, the model

takes the average of the vectors of the input context
words, where c is the number of words in the context,
and are the word vectors corresponding to the words
in the context

Billion Word Imputation Challenge

Aayush Mudgal [12008] Shruti Bhargava [13671]
with assistance from Prof. Amitabha Mukherjee, for the course CS365 : Artificial Intelligence Programming

• The problem is a slight variation from the classical language modelling task.
From every English sentence in the test, exactly one word (randomly) has
been removed.

• Working upon the billion word benchmark corpus provided by Chelba et al,
the task is to develop a language model that has the ability to predict the
missing word and its location in the sentences from the test data.
Submissions are scored using an edit distance metric.

• The problem of word imputations in words seems an interesting and
challenging task which involves the application of natural language
processing, machine learning and sequential data.

• The problem is seemingly a more difficult modification of the Microsoft
Research’s Sentence Completion Challenge. The data in this consists of
1,040 sentences, each of which has four impostor sentences and the task is
to determine from a set of five choices which word is the correct one.

• The Kaggle’s challenge is different from this challenge, as herein we have to
predict the missing word and its location.

• Our approach to the problem involves the creation of a language model,
that will provide a decisive score that a given imputed sentence is
generated by the learn language model. This involves modifying the
following approaches

• The second approach that we are trying is to develop a language model
that will predict the possible word using the context information of its
neighboring words.

Introduction

Related Work

Word2Vec (CBOW)

• Unlike other neural network models, which require a fixed length context,
recurrent neural networks can cause information to cycle inside these
networks

• Input to the input layer is a concatenation of vector w representing current
word and output from neurons in context layer at time t-1

• Training is standard backpropagation with stochastic gradient descent
• This has the inherent advantage over feedforward networks as having

fewer parameters. Only the size of the hidden context needs to be selected
in case of RNN-LM

• The network has an input layer x, hidden (context)
layer s and output layer y. Input to the vector in time t is x(t), output is
denoted as y(t) and s(t) is the hidden layer.
• Initialization of s(0) is not crucial for processing
large amounts of data and can be set to a vector of
small values
• Input vector x(t) represents the word at time t,
encoded using 1-of-N coding and previous context
layer. Size of the vector x being equal to the size of Source: http://www.coling-2014.org/

the vocabulary, and the size of the context layer being 30-500 hidden units,
as mentioned in Mikolov’s paper [1]
• Due to limited computational resources the model can only be trained for

1 epochs. The convergence is expected to be achieved after about 10-20
epochs [2]

Preliminary Results

N-Gram Model
• The understanding of natural languages is very complex. Words essentially

combine in a non-random order. Therefore, language models can be learnt
from the word and its neighbours, and exploit this structure for sentence
completion.

• The 𝑛𝑡ℎ order model assumes that the probability distribution of the 𝑛𝑡ℎ
word depends on only the previous n-1 words. For a 2-gram model,

𝑃 𝑤1 𝑃 𝑤2 𝑤1 𝑃 𝑤3 𝑤2 … . . 𝑃 𝑤𝑛−1 𝑤𝑛)
• A maximum likelihood of the conditional probabilities is given below. where

the count is trained over the billion word corpus (provided as dataset)

𝑃 𝑤2 𝑤1) =
𝑐𝑜𝑢𝑛𝑡 𝑤1, 𝑤2

𝑐𝑜𝑢𝑛𝑡(𝑤1)
• Since the training data is very sparse, the calculated N-grams may not be

accurate (since N-grams not seen in the training set would be assigned 0
probability). Modified Kneser-Ney smoothing technique is used

• Smoothing is used to generate probabilities when we have sparse statistics.
The KenLM library implements two data structures for efficient language
queries, namely the Probing and TRIE.

• Kneser-Ney Smoothing is used for generalization and estimation.

• After a basic modification of the CBOW approach, most of the times
determiners (most frequent) words are predicted. Sentences with imputation
of determiners, can be easily captured by it.

• The N-gram approach is able to capture imputations over small sentences.
We plan to integrate brown clustering with this approach to yield better
results from the sparse training set

Location Word

?

Our Approach

N-gram Model
(using KenLM language modelling toolkit)

Recurrent Neural Network
(using RNNLM toolkit by T. Mikolov)

Word2Vec (CBOW)
(modifying Mikolov’s word2vec code)

Recurrent Neural Network Language Modelling

Modified approach CBOW

Training

• Billion Word Corpus : A 4 gigabyte corpus of English sentences

• Subsampling of frequent words

• Phrasal vector representation

Modified
CBOW

approach

• During the hierarchical softmax, the probability of a word given a context
hierarchical softmax (as a binary tree in word2vec)

• Sum / Average the vectors to form the ‘hidden’ layer state

• The computed vector is used to compute the probabilities of nodes in the
softmax tree (already implemented in the code)

• Compute product of these probabilities and output them

Imputed
Sentence

• After the training, the a pseudo CBOW model is run, without backpropagation
for scoring the test sentence at each position of imputation

• This will output a set of possible imputations

Scoring
Metric

• Each of the possible candidate solution will be parsed with an NLP parser, to
predict the best solution

References

• Mikolov, Tomas, et al. "Efficient estimation of word representations in vector
space." arXiv preprint arXiv:1301.3781 (2013).

• . Mikolov, Tomas, et al. "Distributed representations of words and phrases and
their compositionality." Advances in Neural Information Processing Systems.
2013.

• Microsoft Sentence Completion Challenge
http://research.microsoft.com/apps/pubs/default.aspx?id=157031

http://arxiv.org/pdf/1411.2738v1.pdf

