Trajectory (Motion) estimation of Autonomously Guided vehicle using

Visual Odometry

Ashish Kumar
M.Tech $1^{\text {st }}$ Year

EE, IIT Kanpur
Guide: Prof. Amitabha Mukherjee
Subject : Artificial Intelligence (CS365A)
Session: 2014-2015

Trajectory (Motion) estimation of Autonomously Guided vehicle using Visual Odometry

- Odometry:

Odometry is process of finding motion parameters using information from various kinds of sources like IMUs, optical encoders.

- Visual Odometry:

When the sensor used in odometry process is a visual sensor (camera) ,then it is called Visual odometry

INPUT
OUTPUT

- Aim:

To find camera poses from set of images taken at discrete interval

- How do we do that:

We have to find a Transormation matrix which relates two image frames i.e. how the two frames are rotated and translated from each other.
let set of images be $\left\{I_{0}, I_{1}, I_{2} \ldots I_{k-1}, I_{k}\right\}$, camera poses be $\left\{C_{0}, C_{1}, C_{2}, \ldots . . C_{k-1}, C_{k}\right\}$
and transformation matrix is given by
where:

$$
T_{k, k-1}=\left[\begin{array}{cc}
R_{k, k-1} & t_{k, k-1} \\
0 & 1
\end{array}\right]
$$

$T_{k, k-1}$ is homogenous transformation matrix between images I_{k} and I_{k-1}. $R_{k, k-1}, t_{k, k-1}$ are rotation and translation matrix between images I_{k} and I_{k-1}

- A snap shot of my Application:
age shows inliers ,outliers both.
$2^{\text {nd }}$ image shows only inliers after using RANSAC.

Matches Before RANSAC

Motion estimation is done by finding Essential matrix , which is composed of $R_{k, k-1}, t_{k, k-1}$.

$$
E=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]\left[\begin{array}{c}
\\
R_{k, k-1} \\
\end{array}\right]
$$

"E" matrix can be computed using various methods like RANSAC, Normalized 8 point algorithm, Normalized 7 point algorithm, Nister's 5 point algorithm.

I have used RANSAC in conjunction with Normalized 8 point algo.

Then ' E ' is decomposed into above to matrices using SVD and then we have ' R ' and ' t ' matrix and we can form 'T' matrix from it.

Camera Pose:

Now Concatenate all the transformation matrices. let C_{k} be current pose then

$$
C_{k}=T_{k, k-1} * C_{k-1}
$$

Image Courtesy: "Visual Odometry: Part I- The First 30 Years and Fundamentals"

Various Frames of References:

Image Courtesy: "The KITTI Vision Benchmark suite"

Minion B

Acceleration, Velocity, X, Y, Z:

Data Set:

1. Karlsruhe institute of Technology, Chicago (Technogical research institute of TYOTA for Autonoumous vehicles)
2. Raw 443 unrectified gray scale images of size 1392×512 of .png format.
3. Images are captured in City.

Softwares Used:

1. MATLAB 2013, MathWorks.
2. Visual Studio 2013 Express Edition for VisualBasic.
3. EmguCV , a .NET wrapper of OpenCV binaries.

References:

[2]. Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.
[3]. Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II-Matching, Robustness, and Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012.
[4]. David Niste' r, Member, IEEE , "An Efficient Solution to the Five-Point Relative Pose Problem", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004
[5]. Multiple View Geometry in Computer Vision $2^{\text {nd }}$ Edition by Richard Hartley Australian National University, Canberra, Australia and Andrew Zisserman University of Oxford, UK
[6]. H.C. Longuet, Higgins "A computer algorithm for reconstructing a scene from two projections".

