Problem Statement
using visual odometry
Aim is to find camera poses from set of images taken at discrete interval Problem formulation:

We have to find a Transormation matrix which relates two image frames ie. how the two frames are rotated and translated from each other.
let set of images be $\left\{I_{0}, I_{1}, I_{2} \ldots I_{k-1}, I_{k}\right\}$,camera poses be $\left\{C_{0}, C_{1}, C_{2} \ldots . . C_{k-1}, C_{k}\right\}$
$\begin{array}{ll}\text { and transformation matrix is given by } \\ T_{k, k-1} & =\left[\begin{array}{cc}R_{k, k-1} & t_{k, k-1} \\ 0 & 1\end{array}\right]\end{array}$ ${ }_{T_{k, k}}$ \qquad

1. Feature Detection (SIFT)

	\uparrow
•Gaussian of Images in 4 Octaves (Scale Space) \quad Differen	-Local Maxima in neighbo at multi levels
Save Features	$\rightarrow * *$
2. Feature Matching	
from two images, use nearest ne euclidean distance and distance is	having feature des . The point which is at m x is selected as corresp

euclidean distance and distance is below a threshold is selected as correspondent of point in image 1 . let point correspondences be x,
3. RANSAC Algorithm (Resessenon between nlies)

Usually these matched points are
contaminated with "O. in Motion estimation.

RANSAC is a non deterministic method. No of Inliers in the outpu convergence increases. No of loops Required are given by

Rotation matrix (R) and translation matrix ((t), we need to compute Essential matrix using the Inliers fillered by RANSAC. R is 3×3 and t is 3×1 matrices.

E- matrix can be computed using RANSAC, Normalized 8 point algorithms. Let SVD of $E=U D V^{T}$ Then there are four solution. Let w be skew symmetric matrix. Then four solutions are

Only one of them corresponds to true configuration, which is obtained by 3D triangulation of image correspondences (Inliers). Camera pose is given by $P=[\mathbb{R} \mid t]$. Epipolar constraint on E is given by

Triangulation
It is done by direct linear transform (DLT). Let P and P^{\prime} be mera matrices corresponding to two imaces and $p^{i T}$ and $p^{i T T}$ be rows of P. and P^{\prime} matrices, where $i=1.23$. Then matrix A is given by constraint $x=P X$. Here X is homogenous world coordinate.

If SVD of A is UDV' then the 3D point is last column of V
Now, we choose correct conifiguration by imposing the constraint that 3D point must lie in front of both cameras.

[^0]Presented By
Ashish Kumar
Roll No. 14104023
M.Tech. $2^{\text {mid }}$ Sem EE (2014-16) CSS65A (Arificial Inelligence)

[^0]: References:

