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Abstract. In this challenge, we aim to classify malware into families
by using machine learning techniques. Our dataset is very large, having
10,800 malware files each for training and test set. These files are in
.bytes and .asm format and our challenge is to find the characteristic
features in these files that would help us in distinguishing files belonging
to different families from each other. Not all features we used turned out
to be good and finding the best possible combination of all the features
available is the trickier task here. We will show you, through our results,
that by adding some features to an old feature set might worsen our
results . . .
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1 Motivation

Malware pose a great challenge in our day-to-day life. With their ever increasing
number, it has become absolutely necessary for us to find an efficient method
to get rid of them. The effectiveness of the existing anti-malware has reduced
significantly after the introduction of polymorphism in the computer world. Poly-
morphism encrypts the code of the viruses, thus changing their signatures too.
To understand how this affects the whole working of anti-malware softwares, you
need to know how they work, anti-malware have a database of virus signatures,
which gets updated regularly and whenever they encounter a file, they check if
the signature of this file is in their database or not[6]. If it is, then it is treated as
a virus, otherwise it is treated as a clean file. Polymorphic viruses have a snippet
of code within them, which keeps on changing their code, without altering the
functioning of the virus. This changes the virus’s signature too and they are no
longer detected by the anti-malware. This calls for a better approach to classify
malware.

1.1 Other works

It has been shown that static analysis of virus is more effective than dynamic
analysis[8]. Much work has been done on the malware problem and by using
varied techniques.[7] have used image processing technique to classify malware
into families and were able to get a good accuracy.[4], [3] uses dynamic analysis
and claim to have pretty good results. [8] shows that dynamic analysis is not
feasible for a large dataset like ours, thus limiting us to only use static analysis



techniques. We are not using image processing techniques as the images are
formed using the .byte files and so, whatever features have been applied in the
image processing techniques, similar features can be applied in the bytes file.

2 Methodology

To solve the problem, we had to extract relevant features from the dataset that
was given to us by Kaggle [2]. This was the non-trivial part of the challenge to
identify those features that would help us to classify these files.

2.1 Features used

1. We started by taking the normalised frequency of the two digit hexadecimal
values in our bytes file as the feature. Since each hexadecimal digit can take
16 values each, we had 256 possible values and so we had 256 features in this
case. The frequency of these 256 values was counted for each .bytes file in
the dataset and normalised.

A part of .bytes file of one of the malware

2. A similar feature was used for the asm files, the only difference being that
there were specific places in the asm files, where the frequency was
counted. In the given image, we are counting the hex values in second
column of each row (8C,13,31,12,94,etc.)

A part of .asm file of one of the malware



3. Next, we used the frequency of different assembly functions in the asm
files. We used instructions like ’jump’, ’push’, ’pop’, ’add’, ’dec’ and some
others. 10 such functions were taken as our features.

A part of .asm file of one of the malware
Functions like jz, add, push can be seen in the image

4. We also used other features like size of the files, Shannon entropy[5] and a
mixture of the above features.We used the function of Shannon Entropy
over the frequency of various bytes to get an idea of randomness of the files.

2.2 Classifiers used

We have only used 2 classifiers, Random Forest and Support Vector Machines,
for the project, as this was not the main focus of the challenge. Random forest
were majorly used and gave decent results[9]. We varied the number of trees to
get good results on a given feature set.

3 Results

To check the validity of our classifier, it is applied on the test set to get the prob-
abilities of the malware file belonging to each of the 9 families. The prediction
file, shown below, gives a brief idea of this.



3.1 Evaluation

The score in the competition is calculated using the multi-class logarithmic loss
function, given by:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (1)

Our goal is to take the score as close to 0 as possible.

Our best score on the test board is 0.0.082228293, which uses the frequency of
the 256 hex values as its features and uses random forest classifier.
By using the other techniques, we have got the following results:

Table 1. An overview of the submissions

Feature Score

256 hex values in bytes file(256 trees) 0.082228293
256 normalised hex values in bytes file(500 trees) 0.082421290

1st feature + size of the file 0.099343705
Shannon entropy 14.111708334

10 functions & 30 trees 0.140188703
Size of the files 5.610533917

14 functions & 10 trees 0.156611540
10 functions & 10 trees 0.153125351

256 hex values & 10 trees (.bytes) 0.192934515
256 hex values (.asm) 0.250228987



3.2 Analysis

1. Frequency of hexadecimal values in the bytes file is actually equivalent to
counting the frequency of the functions in the asm files. The functions used
in the malware make a lot of difference and so, it turned out to be a good
feature. You can see the correlation by this figure.

Image taken from [1]

2. Frequency of hexadecimal values at specific positions in the asm file did not
give a nice result. These values do not have any meaning related to them
and were used because for the few files for which their frequency was
checked, gave pretty good values.

3. Frequency of specific assembly language instructions. Some functions are
more important than others. So, the same should be true for the viruses
and hence, their frequency should have been a good feature but it turns
out it is not.

4. The size of the files alone could not have been a very good feature, because
the damage that a virus can cause is independent of its size. The function
that a virus performs is mostly independent of its size and is verified by the
results.

5. The number of trees used in Random forest classifier makes a lot of
difference as evident from the results. Using less trees can give you bad
results like in the case of 256 hex values for the bytes file. It give a
significantly good result when we increased the number of trees to 256.

6. A clean file was also analyzed by the classifier and it gave a probability of
0.57 for one of the malware families while for most of our test set files, the
probability of one of the families is greater than 0.8. So, our classifier can
also differentiate between clean files and malware.



4 Conclusions

The challenge posed by the problem is not completely solved. To find the feature
that can completely distinguish these files into families is still our major concern.
Though we did get pretty close to 0, by getting a score of 0.082 but we were
not able to achieve perfect 0. The method used to implement it does not make
much of a difference and so, our results will get better only if we find the best,
relevant features. The analysis of the result tells us that hex values(of the byte
file), functions(in the asm files) are good features. We need to find more features
and patterns to get better results.

5 Code

Base code for this project is taken from Vishnu Chevli (github.com/vrajs5/Microsoft-
Malware-Classification-Challenge). The code used for this project is available at
https://bitbucket.org/palakag/malware-analysis-code/overview
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