Evolutionary Cube Solver

Anurag Misra
Dept. of Computer Science and Engineering Indian Institute of Science and Technology Kanpur

RUBIK'S CUBE

- Classic 3*3*3 Rubik's Cube invented in 1974 by Erno Rubik
- Highly complex puzzle
- 4.3 * $^{10^{\wedge} 19}$ unique configurations
- Only 1 of these \rightarrow "solved state"
- Smallest number of moves to solve ("God's Number") yet unknown
- Only few exact approaches exist
- Most (promising) based on group theory
- No valid evolutionary approach incorporating group theory until now

RUBIK'S CUBE

- Each face is referred to by its position (relative to users viewpoint)
- Common notation is F, R, U, B, L, D
- These also stand for a go degree clockwise turn
- Correspondingly Fi, Ri, Ui, Bi, Li, Di denote counter-clockwise godegree turn.
- Moreover, F2, R2, U2, B2, L2, D2, correspond to clockwise half turns

How to go about it?

Idea

- Take human strategies and incorporate them into an evolutionary approach
- Use group theoretical background to reduce complexity

Result

- A more powerful evolutionary algorithm adapting human strategies and incorporating exact methods
- Symbiotic Intelligence

Advantage

- No need of terabytes of pre-calculated lookup tables
- Study human strategies
- Use group theoretic background
- Evolve an algorithm

Human strategy based genetic optimizer

Human strategy based genetic optimizer

Human strategy based genetic optimizer
individual (chromosome)

EXISTING EXACT ALGORITHM: Thistlewaite Algorithm

- Developed by Morgan Thistlewaite in 1984
- Divides the problem of solving the cube into 4 -subproblems

Definition

$$
\begin{aligned}
& G_{0}=<F, R, U, B, L, D> \\
& G_{1}=<F, U, B, D, R 2, L 2> \\
& G_{2}=<U, D, R 2, L 2, F 2, B 2> \\
& G_{3}=<F 2, R 2, U 2, B 2, L 2, D 2> \\
& G_{4}=I \\
& \text { with }\left|G_{0}\right|>\left|G_{1}\right|>\left|G_{2}\right|>\left|G_{3}\right|>\left|G_{4}\right| .
\end{aligned}
$$

EXISTING EXACT ALGORITHM: Thistlewaite Algorithm

- Transition cube from $\mathrm{Gi} \rightarrow \mathrm{Gi}+1$ only using moves from Gi
- Pre-calculated lookup-tables, solves in max. 52 moves

EXISTING EXACT ALGORITHM: Thistlewaite Algorithm

Definition

A subset $S \subseteq G$, is called a generator of G if any element of G can be written of a product of elements of S and their inverses.
This is denoted by $G=\langle S\rangle$.

- Thus G(c) $=<$ F, R, U, B, L, D> ("Cube Group") with $|G(C)|=4 \cdot 3^{*} 10^{\wedge} 19$

EXISTING EXACT ALGORITHM: Thistlewaite Algorithm

- $G(0),|G(0)|=4 \cdot 3 * 10^{\wedge} 19$
- $G(1),|G(1)|=2.11$ * $10^{\wedge} 16$
- $\mathrm{G}(2),|\mathrm{G}(2)|=1.95$ * $10^{\wedge} 10$
$G(3),|G(3)|=6.63 * 10^{\wedge} 5$
* no constraint
* orientation of edge cubies
* orientation of corner cubies transport of edge cubies to/from middle layer
*......

State Complexity Reduction by Evolutionary Phase Transition

Evolution Strategy

Rubik's cube as an individual

RUBIK's cube

- Represented using 6 2D matrices
- Can be mutated only by applying move sequences
- Remembers all mutations
- undergone as a sequence list
- Automatically removes abundant moves after each mutation
- Remembers optimized sequence only

State Complexity Reduction by Evolutionary Phase Transition

- Scrambled cube is duplicated λ times

Evolutionary Phase Transition

- Each phase has it's own fitness function, counting
- Wrong oriented/positioned cubies according to group constraints
- Length of the remembered sequence list
- Weights adjustable

Example $\mathrm{G}(0) \rightarrow \mathrm{G}(1)$:
phase(o) fitness $=$ weight. $(w)+c$
w : = number of wrong oriented edges
$\mathrm{c}:=$ length of the sequence list
$\mathrm{G}(\mathrm{i})$ constraints satisfied if phase(i) fitness = c

State Complexity Reduction by Evolutionary Phase Transition

- Scrambled cube is duplicated λ times
- Yields first population after the phase transition
- Process is repeated until phase-4 is solved
- Selection pool generated by choosing best μ individuals from current population

References

- N El-Sourani, S. Hauke, M. Borschbach, "An Evolutionary Approach for Solving Rubik's Cube Incorporating Exact Methods", EvoApplications 2010
- N El-Sourani, M. Borshbach, "Design and Comparison of two Evolutionary Approaches for Solving Rubik's Cube"
- M Borshbach, C. Grelle, "Empirical Benchmarks of a Genetic Algorithm incorporating Human Strategies", University of Applied Sciences 2010

QUESTIONS?

