Manifold Learning

Generative modeling of highdimensional data

Manifolds as Representation

images: 100 x 100 pixels

Learning to represent

Representations in Al

A representation for an object is a "frame" or collection of parameters associated with the object, the relations between them, and also a set of rules and functions for solving problems on the object.

The set of variables and the predicates defined on them are determined by a knowledge engineer.

Q. Can we learn representations?

Role of Perception?

Newborns (10-24 day old) in dark room work hard to position hand so it is visbile in a narrow beam of light. ...

Q. Can perception help in learning a representation?

Learning to represent: robot motions

Representations in Al

A representation for an object is a "frame" or collection of parameters and function associated with the object.

```
How to represent a "robot"?

Must include: degrees of freedom (2)

parameters (\theta_1, \theta_2)

+ rules / functions
```

Manifolds

Linear dimensionality reduction

project data onto subspace of maximum variance PCA: principal components analysis

[A] = top eigenvectors of covariance matrix $[XX^T]$

$$Y = [A] X$$

Manifolds

A manifold is a topological space which is locally Euclidean.

nbrhood N in Rⁿ ↔ ball B in R^d (homeomorphic)

Homeomorphic: Every x in N has a map to a y in B

Dimensionality of manifold = d

Embedding dimension = n

Manifolds

A manifold is a topological space which is locally Euclidean.

nbrhood in Rⁿ ↔ ball in R^d (homeomorphic)

Dimensionality of manifold = d

Embedding dimension = n

Real life data (e.g. images) : $D = 10^5$ motions = smooth variation of just a few parameters

DOFs = pose of faces \rightarrow d = 1

Ideally, d = number of varying parameters

Manifolds in video

Dimensionality of Actions

Weizmann activity dataset: videos of 10 actions by 12 actors [Gorelick / Blank / Irani : 2005 / 07]

Reduced dimensionality

Gestures in low dimensions

Recognizing gestures

Recognizing gestures

Keck gesture dataset

Non-Linear Dimensionality Reduction (NLDR) algorithms: ISOMAP

Euclidean or Geodesic distance?

Geodesic = shortest path along manifold

Isomap Algorithm

- Identify neighbors.
 - points within epsilon-ball (ε -ball)
 - k nearest neighbors (k-NN)
- Construct neighborhood graph.
 - -- x connected to y if neighbor(x,y).
 - -- edge length = distance(x,y)
- Compute shortest path between nodes
 - Djkastra / Floyd-Warshall algorithm
- Construct a lower dimensional embedding.
 - Multi-Dimensional Scaling (MDS)

[Tenenbaum, de Silva and Langford 2001]

Residual Variance and Dimensionality

residual variance = $1 - r^2(D_g, D_y)$; r = linear correlation coefficient D_g = geodesic distance matrix; D_y = manifold distance

Short Circuits & Neighbourhood selection

neighbourhood size

too big: short-circuit errors

too small: isolated patches

[saxena, gupta mukerjee 04]

Locally-Linear Embedding

$$\boldsymbol{J}_{1}(\mathbf{W}) = \sum_{i=1}^{N} \left\| \mathbf{x}_{i} - \sum_{j=1}^{K} W_{j} \mathbf{x}_{j} \right\|^{2}$$

$$\boldsymbol{J}_{2}(\mathbf{Y}) = \sum_{i=1}^{N} \left\| \mathbf{y}_{i} - \sum_{j=1}^{N} W_{j} \mathbf{y}_{j} \right\|^{2}$$

$$egin{array}{c|cccc} & - & \mathbf{u}_1 & - \\ & - & \mathbf{u}_2 & - \\ & & dots \\ & & dots \\ & & & & - \end{array}$$

Non-isometric maps

Fishbowl dataset : no isomorphic map to plane

- Conformal mappings: preserve angles, not distances
- Assume data is uniformly distributed in low dim

Kernel PCA

Kernel PCA

PCA: top eigenvectors of covariance matrix [XX^T]

Kernel PCA: replace X by $\phi(x)$

$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}}$$

Eigenvalue expression $Cv_i = \lambda_i v_i$

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \left\{ \phi(\mathbf{x}_n)^{\mathrm{T}} \mathbf{v}_i \right\} = \lambda_i \mathbf{v}_i$$

To express in terms of kernel fn $k(x_n, x_m) = \varphi(x_n)^T \varphi(x_m)$, substitute $\mathbf{v}_i = \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$

Kernel PCA

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}} \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n).$$

Multiply both sides by $\varphi(x_n)^T$

$$\frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x}_l, \mathbf{x}_n) \sum_{m=1}^{m} a_{im} k(\mathbf{x}_n, \mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} k(\mathbf{x}_l, \mathbf{x}_n).$$

which reduces to

$$Ka_i = \lambda_i N a_i$$

(a K is removed from both sides – affects only zero λ_i).

Projections yi =
$$\sum_{n=1}^{N} a_{in}k(\mathbf{x}, \mathbf{x}_n)$$

What happens when we use a linear kernel $k(x, x') = x^Tx'$?

Kernel PCA: Demonstration

Eigenvalue=21.72 Eigenvalue=4.11 Eigenvalue=21.65 Eigenvalue=3.93 Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53

Kernel: $k(x, x') = \exp(-|x - x'|^2 / 0.1)$

[Scholkopf 98]

Learning representations: Handwritten Digits

handwrittten numerals (MNIST)

Importance of choosing a metric

Manifold mapping with Euclidean Distance

"tangent distance"

Manifold mapping with

Dimensionality: handwritten digits

NLDR algorithms: Representing a robot

Input = images

Manifold dimension

2-DOF motion

Dimensionality reduction

- Identify neighbors.
 - "neighbours" may have link1 in same pose, but link 2 varying
 - Alternately, link2 similar, but link1 varying
 - → variation is along 2 dimensions in image space,
- Construct neighborhood graph.
- Compute geodesics = shortest path between nodes
- Find low-dimensional embedding that preserves geodesics
 - Target dimension for low-D space not known. Just try 1,2,3, ... n

Residual variance vs dimension

dofs: 2

Robot Structure Learning

- Consider many images of robot configurations
 - Construct manifold on images
 - Dimensionality that explains variance
- Resultant graph
 - -- $neighbor(x,y) \rightarrow neighbouring configurations.$
 - Topology (for unbounded theta) = torus

Robot Structure Learning

- Latent variables:
 - Distributed on S¹ x S¹ topology
 - Along circumferential path: θ_1 ; along radial: θ_2
 - Naïve, non-metric representation of θ_1, θ_2
- Manifold transformation = mapping between input images (workspace) ↔ naive θ₁,θ₂ (C-space)
 - manifold → image ≈ naïve forward kinematics
 - image → manifold ≈ naïve inverse kinematics

Differences with AI representation

- Grounding
 - Al models are defined only in terms of other logical structures → circularity of definitions
 - Manifold-based naïve representations : grounded on sensory data:
- Physics like formulation (θ₁,θ₂) may not be needed
 - Topologically consistent representation of (θ_1, θ_2)
 - Non-uniform sampling → higher resolution for functionally relevant regions

