
Manifold Learning

Generative modeling of high-
dimensional data



images: 100 x 100 pixels

Ack: A. Efros, original images from hormel corp.

Manifolds as Representation



Learning to represent



Representations in AI

A representation for an object is a “frame” or 
collection of parameters associated with the 
object, the relations between them, and 
also a set of rules and functions for solving 
problems on the object.  

The set of variables and the predicates defined 
on them are determined by a knowledge 
engineer.  

Q. Can we learn representations?



Role of Perception? 

Newborns (10-24 day old) in 
dark room work hard to position 
hand so it is visbile in a narrow 
beam of light. … 

Q. Can perception help in 
learning a representation? 

[A. van der Meer, 1997: Keeping the arm in the limelight]



Learning to represent: robot motions



Representations in AI

A representation for an object is a “frame” or 
collection of parameters and function 
associated with the object. 

How to represent a “robot”? 

Must include: degrees of freedom (2)
parameters (θ1,θ2 )

+ rules / functions



Manifolds



Linear dimensionality reduction
project data onto subspace of maximum variance

PCA: principal components analysis

[A] = top eigenvectors of covariance matrix [XXT]
Y = [A] X

e1

e1



Manifolds

A manifold is a topological space which is 
locally Euclidean.

nbrhood N in Rn ↔ ball B in Rd 

(homeomorphic)

Homeomorphic: Every x in N has a map 
to a y in B

Dimensionality of manifold = d
Embedding dimension = n



Manifolds

A manifold is a topological space which is 
locally Euclidean.

nbrhood in Rn ↔ ball in Rd 

(homeomorphic)
Dimensionality of manifold = d
Embedding dimension = n

Real life data (e.g. images) : D = 105

motions = smooth variation 
of just a few parameters

DOFs = pose of faces → d = 1

Ideally, d = number of varying parameters



Manifolds in video



Dimensionality of Actions

side          skip            walk         wave1       wave2   

bend            jack           jump         pjump         run 

Weizmann activity dataset:
videos of 10 actions by 12 actors
[Gorelick / Blank / Irani : 2005 / 07]



Reduced dimensionality

Locality Preserving Projecction 
[He and Niyogi 2003]



Gestures in low dimensions



Recognizing gestures

HMM
1

HMM2

HMM3



Recognizing gestures

Keck gesture dataset



Non-Linear Dimensionality Reduction 
(NLDR) algorithms:  ISOMAP



Euclidean or Geodesic distance?

Geodesic = shortest path along manifold



Isomap Algorithm

• Identify neighbors.
– points within epsilon-ball  (ε-ball)
– k nearest neighbors (k-NN)

• Construct neighborhood graph.
-- x connected to y if  neighbor(x,y).
-- edge length = distance(x,y)

• Compute shortest path between nodes
– Djkastra  / Floyd-Warshall algorithm

• Construct a lower dimensional embedding.
– Multi-Dimensional Scaling (MDS)

[Tenenbaum, de Silva and Langford 2001]



Residual Variance and 
Dimensionality

residual variance = 1 – r2(Dg, Dy); r = linear correlation coefficient
Dg = geodesic distance matrix; Dy = manifold distance

Isomap

PCA (linear)

Manifold dimensio

Residual
variance



Short Circuits & Neighbourhood 
selection

neighbourhood size

too big: short-circuit errors
too small: isolated patches 

[saxena, gupta mukerjee 04]
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Locally-Linear Embedding



Non-isometric maps
Fishbowl dataset : no isomorphic map to plane

- Conformal mappings: preserve angles, 
not distances

- Assume data is uniformly distributed in low dim

IsoMap Conformal IsoMap LLE



Kernel PCA



Kernel PCA
PCA: top eigenvectors of covariance matrix [XXT]

Kernel PCA:  replace X by ϕ(x)

Eigenvalue expression  Cvi = λi vi

To express in terms of kernel fn  k(xn, xm) = φ(xn)Tφ(xm), 
substitute                             

Bishop section 12.5



Kernel PCA

Multiply both sides by φ(xn)T

which reduces to
Kai = λi N ai

(a K is removed from both sides – affects only zero λi).  
Projections yi = 

What happens when we use a linear kernel k(x, x') = xTx' ? 



Kernel PCA : Demonstration

[Scholkopf 98]Kernel: k(x, x') = exp (−|x − x'|2 / 0.1)



Learning representations: 
Handwritten Digits



handwrittten numerals (MNIST)

Modified NIST digits database: 60K + 10K 28x28 images



Importance of choosing a metric



Manifold mapping with 
Euclidean Distance 



“tangent distance”



Manifold mapping with 
Euclidean Distance 





Dimensionality: handwritten digits

Manifold dimension

Residual
variance



NLDR algorithms:
Representing a robot



Input = images 



Manifold dimension



2-DOF motion



Dimensionality reduction

• Identify neighbors.
– “neighbours” may have link1 in same pose, but link 2 varying
– Alternately, link2 similar, but link1 varying 

 variation is along 2 dimensions in image space, 

• Construct neighborhood graph.  

• Compute geodesics = shortest path between nodes
• Find low-dimensional embedding that preserves 

geodesics
– Target dimension for low-D space not known.  Just try 1,2,3, … n



Residual variance vs dimension

dofs : 2



Robot Structure Learning

• Consider many images of robot configurations
– Construct manifold on images
– Dimensionality that explains variance

• Resultant graph
-- neighbor(x,y) → neighbouring configurations.
– Topology (for unbounded theta) = torus





• Latent variables:
– Distributed on S1 x S1 topology
– Along circumferential path: θ1; along radial: θ2

– Naïve, non-metric representation of θ1,θ2

• Manifold transformation = mapping between 
input images (workspace) ↔ naive θ1,θ2 (C-space)
– manifold → image ≈ naïve forward kinematics
– image → manifold ≈ naïve inverse kinematics

Robot Structure Learning



Differences with AI representation

• Grounding

– AI models are defined only in terms of other logical 
structures  →  circularity of definitions

– Manifold-based naïve representations : grounded on 
sensory data:

• Physics like formulation (θ1,θ2) may not be needed

– Topologically consistent representation of (θ1,θ2)

– Non-uniform sampling → higher resolution for 
functionally relevant regions 



Manifold-based Representation 
Learning

Amitabha Mukerjee
IIT Kanpur

Work done with M.S. Ram, Ankit Awasthi, Ankit 
Gupta, Sadbodh Sharma


	Manifold Learning
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Manifolds
	Linear dimensionality reduction
	Manifolds
	Manifolds
	Manifolds in video
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Non-Linear Dimensionality Reduction (NLDR) algorithms:  ISOMAP
	Euclidean or Geodesic distance?
	Isomap Algorithm
	Residual Variance and Dimensionality
	Short Circuits & Neighbourhood selection�
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Learning representations: Handwritten Digits
	handwrittten numerals (MNIST)
	Importance of choosing a metric
	Manifold mapping with Euclidean Distance 
	“tangent distance”
	Manifold mapping with Euclidean Distance 
	Slide Number 35
	Dimensionality: handwritten digits
	NLDR algorithms:�Representing a robot
	Input = images 
	Manifold dimension
	Slide Number 40
	Dimensionality reduction
	Residual variance vs dimension
	Robot Structure Learning
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Manifold-based Representation Learning�

