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Abstract

Recommendation systems are widely used in e-commerce companies like Amazon and
Netflix to help users discover items that might interest them. Due to their wide applicabil-
ity, recommendation systems have become an area of active research. We do a comparative
study on the different algorithms used to do recommendation popularly and build a hybrid
model out of them.

Introduction
Various algorithms for recommending choices to users have been used by companies involved in selling
products and services online like E-commerce sites, movie renting sites, housing and restaurant recom-
mendation sites etc. These algorithms can be majorly classified into two types content-based techniques
and collaborative-filtering based techniques. The former rely on the computing the similarity of items
based on the meta data provided about the items i.e. incase of movies data like the genre, date of release,
IMDB rating etc. For example if the user has watched a lot of comic thrillers, he is recommended a suit-
able comic thriller. There are also demographic content based techniques which compute similar users
based on their same demography to do recommendation. The collaborative filtering techniques rely on
computing the similarity based upon similarity of the user ratings for multiple items i.e. if two users have
liked similar movies in the past they are likely to have same preferences.
In collaborative filtering, we will also look at the latest techniques which incorporate the factor of time
while recommending products. This is very essential especially, in todays time when the users have way
too many choices and their preferences change frequently over time.

Dataset Used
We will be using the MovieLens 100k dataset for testing and training purposes. The reason for using this
particular dataset is that the data is made available by a reputed and trustworthy source (University of
Minnesota) and contains the information about the movies and the demographic data for users which we
require in our content-based analysis. Also, each of the user-item ratings has a timestamp as the ratings
have been collected over a period of 7 months.
The dataset contains 100,000 ratings from 943 MovieLens users on 1682 movies from September 19th,
1997 through April 22nd, 1998. We will use 80k for training and 20k for validation wherever such a
partition is required.
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Data Analysis
We analyzed the given to dataset to get some insight. Here are some of the results. The pie chart in Figure
shows the overall distribution of ratings. The percentage of people voting for 3,4,5 is unexpectedly higher
that people voting for 1 and 2. This shows that people have tendency to not rate a movie rather than rating
it low if they do not like it.

Figure 1: Distribution of ratings

Scatter plot in Figure show mean rating v/s variance scatter plot. We can see from the plot that very
high rating(around rating 5) or very low rating(around rating 1) tend to have low variance compared to
rating in middle range.So we can take end rating cases as consistent among different users.

Figure 2: Mean v/s variance of rating

Since many entries in rating matrix are unknown we first filled these entries using SVD. Plots in
Figure and are isomap and local linear embedding of rating matrix respectively. It is evident from
these plots that rating from different users follow lie in a manifold.

Figure 3: Isomap of rating matrix
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Figure 4: Locally linear embedding of rating matrix

Methods

Slope One
It is one of the simplest non trivial algorithm used for recommendation . It is based on the intuitive
principle of popularity differential. To measure this difference, we take a pair of items which are rated
by the same person and take the difference in rating.

For Slope One method we first calculate deviation matrix(D) given by

Dj,i =
∑
u∈Sj,i

uj − ui
card(Sj,i)

where u,uj ,Sj,i denotes user, rating to item j by user u,set of all the users who rated both item j and i
respectively. Then we can predict rating by:

r(uj) =
1

card(Rj)

∑
i∈Rj

Dj,i + ui

where Rj is set of all items such that user u has rated that item and item pair i and j is rated by atleast
one more user.

KNN
We can apply this algorithm to either user feature vector or item feature vector giving rise to two separate
algorithms: UserKnn and ItemKnn [1, 2]. This algorithm finds k nearest neighbour of given feature
vector based on some similarity criteria and then take weighted average of this k neighbours. In common
scenario more dense data is available for items therefore ItemKnn is generally a preferred choice.

We have used Pearson correlation coefficient as our similarity measure which for two vector X and
Y can be given by:

Cov(X,Y )

σXσY

Content based
In many recommender system you will come across user who have not rated significant amount of items.
For these users methods like KNN and SVD who rely heavily on data perform poorly. This method
suggest items to users based on content information of items for example in our case we can suggest
movies based on genre similar to genre that a particular user generally prefers.
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Demographic based
This method recommends items to the users based on their personal information like gender, age, profes-
sion and location. This method does not rely on rating system therefore this method generally tends to
perform better then other method for new users with no rating.

Baseline Predictor
For the dimensionality reductions methods we first build a baseline predictor. We estimate a baseline
prediction for the unknown rating of user u and item i.

bui = bi + bu + µ

where
bi is the item bias
bu is the user bias
µ is the average rating of dataset

(1)

bi and bu calculate the deviation of item i and user u from the average item and user ratings respectively
in the complete dataset.
For example, if the average rating of all movies if 3.3 and Godfather being an above average movie
receives ratings 0.5 above the average. Also if user X is a critical user who tends to rates movies 0.2
below the average. The baseline prediction for X-Godfather pair would be 3.3 + 0.5− 0.2.

Singular Value Decomposition
In this method [2], we try to reduce the dimensionality of the given dataset by using Singular Value
Decomposition. The matrices obtained after SVD are helpful in our case as it generates the best approx-
imation of the input matrix in terms of Frobenius norm which minimizes the RMSE.
We build a user feature feature matrix and an item feature matrix of lesser dimensionality.

r̂ui = pTu qi + bui

where
r̂uiis the predicted rating
pu is user matrix
qi is the item matrix
bui is the baseline prediction

(2)

Since, our input matrix is a sparse one we perform a stochastic gradient descent to generate our output
matrices iterating over the given ratings and reducing the RMSE with each iteration.

min

( ∑
(u,i)∈κ

(
rui − µ− bu − bi − pTu qi

)2

+

K

(
b2u + b2i + ‖pu‖2 + ‖qi‖2

))
where

κ is set of all given ratings
K is the regularization constant

(3)

On MovieLens data we take learning rate to be 0.01, regularization constant to be 0.015 and maximum
400 iterations. We decompose the input matrix to rank 15 matrices.
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α 0.001 0.01 0.03 0.05 0.1
RMSE 0.93412 0.92976 0.93053 0.93179 0.93354

Table 1: RMSE values for different values of alpha in timeSVD++.

Incremental SVD
This is an improved version of the SVD [3]. Here we aim to integrate both explicit and implicit feedback
of the user to do predictions. For most products implicit feedback could include data like purchase his-
tory, number of times the product link was clicked etc. However, in our dataset such information is not
available. None the less, a different kind kind of implicit data is available to us. The dataset provides us
the information on what movies were rated and what remained unrated by the user i.e. a binary matrix.
This information does not look much useful at first however it has proved to considerably improve our
recommendations.
We incorporate this implicit feedback into our user feature vector

r̂ui = qTi

pu + |N(u)|−
1
2

∑
y∈N(u)

yj

+ bui

where
N(u) is the set of items rated by user u

(4)

Here, every user is represented by a feature vector pu as trained using explicit feedback as done in (2)
and the sum

∑
y∈N(u) yj which incorporates the implicit feedback.We train this model using SGD with

learning rate 0.004, regularization constant 0.005 and maximum 600 iteration. We decompose the input
matrix to rank 5 matrices.

min

( ∑
(u,i)∈κ

(
rui − µ− bu − bi −

pu + |N(u)|−
1
2

∑
y∈N(u)

yj

)2

+

K

(
b2u + b2i + ‖pu‖2 + ‖qi‖2

)) (5)

Incremental SVD with Temporal Dynamics
This technique is similar to SVD++ with the exception that it also involves the factor of time [3, 4].
Users change change their preferences over time. We divide the whole time space into a number of
equally spaced time bins. Each ratings belongs to one time bin. We use a linear model to capture the
preference drift in users. So if user u rated a movie in time bin t, the deviation is given by

devu(t) = sign(t− tu).|(t− tu)|β

wheretuis the mean date of rating by user u
(6)

Therefore, if we have f factors,

pTu = (pu1(t), pu2(t), . . . , puf (t))

puk(t) = puk + αuk.devu(t)
(7)

α which determines the effect of the time-variant part of SVD is found to give optimal results at 0.01.
Table 1 gives the RMSE value for different values of α. The number of time bins selected is dependent
on how much data we have. If we take a finer resolution and we do not have enough data, our model will
give a higher RMSE value. We have used 25 bins for our dataset which gave the most optimal model.
Table 2 shows the RMSE values for different timebins.
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TimeBins 5 10 25 40 60
RMSE 0.93220 0.93045 0.92976 0.93042 0.93103

Table 2: RMSE values for different values of time bins in timeSVD++. Larger the number of time bins,
finer the resolution

The final model looks much similar to SVD++.

r̂ui = qTi

pu(t) + |N(u)|−
1
2

∑
y∈N(u)

yj

+ bui

where
N(u) is the set of items rated by user u

(8)

We use the learning rate of 0.005 and increase the number of iterations to 1200 .We decompose the input
matrix to rank 5 matrices.

Hybrid Model
We tried to build a simple model to verify our claim that a hybrid model could perform better than indi-
vidual methods. We took a linear combination of these techniques - content-based collaborative filtering,
Demographic based collaborative filtering, User-user k nearest neighbour and SVD with temporal ef-
fects. We achieved an improvement of 1% using this model. Weights that we used are 0.26,0.05,0.09
and 0.60 for User-user knn, content based method, demographic based method and SVD with temporal
effect respectively.

Results
RMSE values for different algorithms. Lower the RMSE better the accuracy of the model.

Method RMSE
Slope One 1.03136

KNN (user-user) 0.9439889
KNN(item-item) 0.9500658
Content Based 1.8461

Demographic Based 1.11833
SVD 0.942863

SVD++ 0.93624
timeSVD++ 0.929762

Hybrid 0.915856

Conclusion
We studied the various algorithms individually and observed that each algorithm has its own strengths.
For users with sparse rating matrix, content and demographic based methods are suitable whereas for
other cases KNN and SVD methods are more optimal. Incorporating the time factor in time based SVD
had its own challenges. Using a simple model which just ignored the previous ratings of the user would
have lost too much signal, therefore we used a linearly degrading model which gave better results. The
given dataset had ratings spread over 7 months. In a bigger database like that of Netflix, the effect of time
based model would have been more prominent.
The use of implicit feedback as simple as taking the boolean vector of whether a user has rated a movie
or not had a considerable effect on the results. This is promising of even more exciting results when more
concrete implicit feedback models like purchase history of the customer etc. are available.
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Finally, combining KNN, Demographic, content-based and time-SVD++ methods using weighted mean,
we achieved an RMSE of 0.915856 i.e. a 1% improvement over the best individual method. This change
although appears to be small in magnitude, but has a large impact on the top 10 recommendations as
emphasized by Koren himself [5].
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