Distinguishing Cause and Effect

Balram Meena Lohit Jain
Indian Institute of Technology Kanpur
Motivation

• Pervasive in Science, Medicine, Economy and many aspects of everyday life.
• What affects Health, Economy, Climate Changes?
• Gold Standard: Randomized Controlled Experiments
• Experiments Costly, Unethical, Unfeasible!
• Non Observational Routine Data easily available
Causal Graph Example

Causality Challenge #3: Cause Effect Pairs

- Part of IJCNN 2013 contests
- Results discussed in NIPS 2013
Causality Challenge #3: Cause Effect Pairs

• Challenge: Rank pairs of variables \{A, B\} to prioritize experimental verifications of the conjecture that A causes B.
• Determine from the joint observation of samples of two variables A and B that A \rightarrow B.
• But, "Correlation does not mean Causation"!
• Could be Consequences of a common cause.
Setup

- No feedback loops.
- No Explicit time information
- Variables are aggregate statistic, eg: Temp, life expectancy.
- Pairs independent of each other
Datasets

• Pair of real variables intermixed with
 • controls (dependent but not causally related) and
 • semi-artificial cause-effect pairs (real variables mixed in various ways to produce a given outcome)

• 4050 training pairs
• 4050 validation pairs
• 4050 test pairs
Cause Effect Pair problem

Evaluation Scheme

• For any pair, score between -Inf and +Inf,
• Large positive values: A is a cause of B with certainty
• Large negative values: B is a cause of A with certainty
• Near zero: Neither A causes B nor B causes A
• Scores as ranking criterion
• Evaluate entries with two Area under the ROC Curve (AUC) scores
Area Under the ROC curve

• The results of classification, obtained by thresholding the prediction score, may be represented in a confusion matrix, where \(tp \) (true positive), \(fn \) (false negative), \(tn \) (true negative) and \(fp \) (false positive) represent the number of examples falling into each possible outcome:

• We define the sensitivity (also called true positive rate or hit rate) and the specificity (true negative rate) as:
 • Sensitivity = \(\frac{tp}{pos} \)
 • Specificity = \(\frac{tn}{neg} \)
 where \(pos=tp+fn \) is the total number of positive examples and \(neg=tn+fp \) the total number of negative examples.

• The area under the curve obtained by plotting sensitivity against specificity by varying a threshold on the prediction values to determine the classification result.

• The AUC is calculated using the trapezoid method.
Causality in two variables: Intuitively

• Intuitively: Factorization of the joint distribution
 \(P(\text{cause}; \text{effect}) \) into \(P(\text{cause})P(\text{effect} \mid \text{cause}) \)
 typically yields models of lower total complexity than
 \(P(\text{cause}; \text{effect}) \) into \(P(\text{effect})P(\text{cause} \mid \text{effect}) \)

• Definition of Notion of Intuition not obvious!
Previous Models

• The methods define classes of conditionals \mathcal{C} and marginal distributions \mathcal{M}, and prefer

\[X \to Y \text{ whenever } P(X) \in \mathcal{M} \text{ and } P(Y \mid X) \in \mathcal{C} \]

but $P(Y) \notin \mathcal{M}$ or $P(X \mid Y) \notin \mathcal{C}$.

• Notion of model complexity: all probability distributions inside the class are simple, and those outside the class are complex.

• This a priori restriction poses serious practical limitations
Causality in two variables

• Deterministic
 \[f(X,E) = F(X) \]

• Non-deterministic
 I. AN (additive noise)
 \[f(X,E) = F(X) + E \]
 II. PNL (Post-Non-Linear model)
 \[f(X,E) = G(F(X) + E) \]
 III. LINGAM (f is linear)
 \[f(X,E) = pX + qE \]
 IV. HS (hetero-Schedastic noise)
 \[f(X,E) = F(X) + E.G(X) \]

• Idea is to fit restriction model in both direction (X -> Y and Y -> X)
• Direction to be one that yields the best fit.
Additional Assumptions

A. Determinism (no other causes of Y): a function f exists such that $Y = f(X,E)$

B. X and E are independent.

C. The distribution of the cause is “independent” from the causal mechanism (f)

D. The noise has a standard-normal distribution: $E \sim N(0,1)$
Other Models

• Based on (A) and (B) with some additional restrictions on f (Slide 13).

• For these special cases, it has been shown that a model of the same (restricted) form in the reverse direction $Y \rightarrow X$ that induces the same joint distribution on (X, Y) does not exist in general.

• But, a limited model class may lead to wrong conclusions about the causal direction.
Probabilistic Latent Variable Model

• In general, one can always construct a random variable $E' \sim N(0,1)$ and a $f' : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that
 \[X = f'(Y, E') \]

• In combination with (C) and (D) : an asymmetry!
• Infer the causal direction
Basic Idea

• Define non-parametric priors on the \(f \) and input distributions favoring lower complexity.

• Inferring using standard Bayesian model selection

• Preference to model with largest marginal likelihood

• Bayesian Approach: Noise as Latent Variable summarizing influence of all other unobserved causes.
Bayesian Model Selection

• Prefer model with highest evidence:
 \[\rho(D|M) = \int \rho(D|\theta, M) \rho(\theta|M) d\theta, \]

 \(D = \text{Data}, \ M = \text{Model}, \ \theta = \text{Parameters} \)

Trade-off between likelihood (goodness of fit) and priors (model complexity).

• Causal Discovery: Compare evidence X→Y and Y→X
References

Thank You!

Questions ...